Citation: GONG Jiadi, CAO Xiaolin, CAO Zhaoyun, BIAN Yingfang, YU Shasha, CHEN Mingxue. Determination of five arsenic species in rice by liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(7): 717-722. doi: 10.3724/SP.J.1123.2014.03015 shu

Determination of five arsenic species in rice by liquid chromatography-inductively coupled plasma-mass spectrometry

  • Corresponding author: CHEN Mingxue, 
  • Received Date: 12 March 2014
    Available Online: 5 May 2014

    Fund Project: 浙江省重点科技创新团队项目(2012R10028-05). (2012R10028-05)

  • A method was developed for the simultaneous determination of arsenic acid [As (Ⅴ)], arsenious acid [As (Ⅲ)], arsenobetaine (AsB), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in rice by liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). The extraction reagent was 0.3 mol/L nitric acid with heat-assistant condition for 1.5 h at 95 ℃. Then, the five arsenic species were separated by an anion exchange column (Dionex IonPac AS19, 250 mm×4 mm) and detected by ICP-MS. Four kinds of extracted solutions were compared through the extraction efficiency. The concentration of nitric acid, the temperature and the extraction time were optimized. The recoveries of the five arsenic species spiked in rice at two levels ranged from 89.6% to 99.5% with the relative standard deviations (RSDs, n=5) of 0.6%-3.6%. The measured values of the arsenic species in standard rice materials were consistent with their standard values. The linear ranges were 0.05-200 μg/L for AsB and DMA, 0.10-400 μg/L for As (Ⅲ) and MMA, 0.15-600 μg/L for As (V). The limits of detection for the five arsenic species were 0.15-0.45 μg/kg. The results showed that the method is much more precise for the risk assessment of the rice. This method is simple, accurate and durable for the determination of arsenic species in rice.
  • 加载中
    1. [1]

      [1] Stroud J L, Norton G J, Islam M R. Environ Pollut, 2011, 159: 947  

    2. [2]

      [2] Kim J Y, Kim W I, Kunhikrishnan A, et al. Food Sci Biotechnol, 2013, 22(6): 1509  

    3. [3]

      [3] Arao T, Kawasaki A, Baba K, et al. Environ Sci Technol, 2011, 45(4): 1291  

    4. [4]

      [4] Zheng M Z, Li G, Sun G X, et al. Plant Soil, 2013, 365: 227  

    5. [5]

      [5] GB 2762-2012

    6. [6]

      [6] Brown J L, Kitchin K T, George M. Teratogenesis Carcinog Mutagen, 1997, 17: 71  

    7. [7]

      [7] Watanabe T, Hirano S. Arch Toxicol, 2013, 87(6): 969  

    8. [8]

      [8] Maher W, Foster S, Krikowa F. Environ Sci Technol, 2013, 47: 5821  

    9. [9]

      [9] Huang J H, Ilgen G, Fecher P. J Anal At Spectrom, 2010, 25: 800  

    10. [10]

      [10] Carey A M, Scheckel K G, Lombi E, et al. Plant Physiol, 2010, 152: 309  

    11. [11]

      [11] Raber G, Stock N, Hanel P, et al. Food Chem, 2012, 134: 524  

    12. [12]

      [12] Pan H, Li X W, Gong Z Y, et al. Journal of Wuhan Polytechnic University (潘浩, 李筱薇, 宫智勇, 等. 武汉工业学院学报), 2012, 31(3): 1

    13. [13]

      [13] Yun H X, Zhang L, Li X W, et al. Journal of Hygiene Research (云洪霄, 张磊, 李筱薇, 等. 卫生研究), 2010, 39(3): 316

    14. [14]

      [14] Narukawa T, Chiba K. J Agric Food Chem, 2010, 58: 8183  

    15. [15]

      [15] Juskelis R, Li W X, Nelson J, et al. J Agric Food Chem, 2013, 61: 10670  

    16. [16]

      [16] Paik M K, Kim M J, Kim W I. J Korean Soc Appl Biol Chem, 2010, 53(5): 634  

    17. [17]

      [17] Huang J H, Fecher P, Ilgen G, et al. Food Chem, 2012, 130: 453  

    18. [18]

      [18] GB/T 23372-2009

    19. [19]

      [19] GB/T 5009.11-2003

    20. [20]

      [20] Yang L J, Hu Q R, Guo W, et al. Chinese Journal of Chromatography (杨丽君, 胡巧茹, 郭伟, 等. 色谱), 2011, 29(5): 394  

    21. [21]

      [21] Heitkemper D T, Vela N P, Stewart K R, et al. J Anal At Spectrom, 2001, 16: 299  

    22. [22]

      [22] Yue B, Liu L P, Xie K, et al. Chinese Journal of Food Hygiene (岳兵, 刘丽萍, 谢科, 等. 中国食品卫生杂志), 2013, 25(3): 238

    23. [23]

      [23] Zhang C H, Wang Y, Ge Y. Anal Lett, 2013, 46: 1573  

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    9. [9]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

Metrics
  • PDF Downloads(0)
  • Abstract views(288)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return