Citation:
LI Feng, KANG Jingwu. Enrichment of glycoproteins in human serum using concanavalin A-functionalized magnetic nanoparticles and identification by mass spectrometry[J]. Chinese Journal of Chromatography,
;2014, 32(4): 369-375.
doi:
10.3724/SP.J.1123.2013.12018
-
Biomedical sciences, and in particular biomarker research, demand efficient glycoprotein enrichment platforms. Herein novel magnetic nanoparticles with an average size around 135 nm in diameter were prepared for the enrichment of glycoproteins in human serum. The prepared magnetic nanoparticles possessed uniform core/shell/shell structure which was composed of 8 nm magnetite internal core and double layers consisting of silica and poly glycidyl methacrylate (GMA). The latter was constructed by seed polymerization. Modified by a polyethylene hydrophilic linker, it made the surfaces of the magnetic nanoparticles highly hydrophilic so as to reduce the nonspecific adsorption of proteins. We examined affinity purification of glycoprotein in diluted human serum using our prepared magnetic nanoparticles with immobilization of concanavalin A (MNP@ConA). The enriched proteins were reduced, alkylated and digested with trypsin. These peptides then were separated by offline two-dimensional chromatography. Protein identification was realized with nano-high performance liquid chromatography-orbitrap mass spectrometry. A total of 80 proteins were identified, among them 76 proteins were found to be glycoproteins by use of bioinformatic tools. β-2-Glycoprotein 1 present in serum at low mass concentration around 0.00001 g/L was also identified. This demonstrates the capability of magnetic nanoparticle for recovering minute amounts of glycoproteins from a fluid exhibiting a dynamic concentration range more than 12 orders of magnitude. Overall, MNP@ConA has been proven to be an efficient alternative to currently available immobilization supports.
-
-
-
[1]
[1] Hagglund P, Bunkenborg J, Elortza F, et al. J Proteome Res, 2004, 3: 556

-
[2]
[2] Ye M L. Chinese Journal of Chromatography (叶明亮. 色谱), 2013, 31(1): 1
-
[3]
[3] Shental-Bechor D, Levy Y. Curr Opin Struct Biol, 2009, 19(5): 524

-
[4]
[4] Peracaula R, Barrabés S, Sarrats A, et al. Disease Markers, 2008, 25: 207

-
[5]
[5] Zeng X, Hood B L, Sun M, et al. J Proteome Res, 2010, 9(12): 6440

- [6]
-
[7]
[7] Zhao J, Qiu W L, Simeone D M, et al. J Proteome Res, 2007, 6: 1126

- [8]
-
[9]
[9] Feng S, Yang N, Pennathur S, et al. Anal Chem, 2009, 81(10): 3776

-
[10]
[10] Aguilar-Arteaga K, Rodriguez J A, Barrado E. Anal Chim Acta, 2010, 674(2), 157
-
[11]
[11] Wang Z, Wang C. Chinese Journal of Chromatography (王志, 王春. 色谱), 2012, 30(10): 977
-
[12]
[12] Chen H M, Deng C H, Zhang X M, Angew Chem Int Ed, 2010, 49(3): 607
-
[13]
[13] Ferreira J A, Daniel-da-Silva A L, Alves R M P, et al. Anal Chem, 2011, 83: 7035

-
[14]
[14] Wei Y H, Wang T D, Liu C, et al. Chin J Chem, 2013, 31: 715

-
[15]
[15] Julenius K, Molgaard A, Gupta R, et al. Glycobiology, 2004, 15(2): 153

-
[16]
[16] Li Y C, Lin Y S, Thai P J, et al. Anal Chem, 2007, 79: 7519

- [17]
-
[18]
[18] Sparbier K, Asperger A, Resemann A, et al. J Biomol Tech, 2007, 18(4): 252
-
[1]
-
-
-
[1]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[2]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[5]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[6]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[7]
Jie WEI , Qing ZHOU , Dandan DING , Xiang JING , Fei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435
-
[8]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[9]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[10]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[11]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[12]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[13]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[14]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[15]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[16]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[17]
Zongyuan Chen , ChunSheng Shi , Yiwen Li , Ganlin Zu , Qiang Jin , Haishan Wang , Fujun Wang , Dekun Yan , Zhijun Guo , Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103
-
[18]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[19]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[20]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(358)
- HTML views(18)
Login In
DownLoad: