Citation: NI Zhanglin, TANG Fubin, QU Minghua, MO Runhong. Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(2): 174-178. doi: 10.3724/SP.J.1123.2013.09047 shu

Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry

  • Corresponding author: TANG Fubin, 
  • Received Date: 29 September 2013
    Available Online: 27 November 2013

    Fund Project: 国家林业公益性行业科研专项课题(201304705,201204414). (201304705,201204414)

  • An analytical method using liquid chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS) for the determination of trivalent chromium (Cr(Ⅲ)) and hexavalent chromium (Cr(Ⅵ)) in dried edible fungi was established. Edible fungi sample was ashed by a microwave ashing system and Na2EDTA was added to the ashing sample to stabilize the Cr(Ⅲ). An anion exchange column (250 mm×4.6 mm, 10 μm) with a 60 mmol/L nitric acid (pH 9.3) solution as mobile phase was used for the separation and using ICP-MS as a detector for the determination of trivalent chromium and hexavalent chromium. The calibration curves were linear in the range of 0.5-50 μg/L and the correlation coefficients were 0.9999 for Cr(Ⅲ) and Cr(Ⅵ). The average recoveries of Cr(Ⅲ) and Cr(Ⅵ) ranged from 78.0% to 90.7% with the relative standard deviations (RSDs, n=6) less than 4%. The limits of quantification (LOQ) of Cr(Ⅲ) and Cr(Ⅵ) were 0.5 μg/L. The method is efficient, reliable and sensitive, and can meet the requirement for the determination of Cr(Ⅲ) and Cr(Ⅵ) in dried edible fungi.
  • 加载中
    1. [1]

      [1] Owlad M, Aroua M K, Daud W A W, et al. Water Air Soil Poll, 2009, 200: 59  

    2. [2]

      [2] Chen G Y. Journal of Instrumental Analysis (陈国友. 分析测试学报), 2007, 26(5): 742

    3. [3]

      [3] Yang D Q, Zhou Y, Lei S R, et al. Sichuan Environment (杨定清, 周娅, 雷绍荣, 等. 四川环境), 2008, 27(2): 71

    4. [4]

      [4] Kalac P, Svoboda L. Food Chemistry, 2000, 69(3): 273  

    5. [5]

      [5] Zhu F, Qu L, Fan W, et al. Environ Monit Assess, 2011, 179(1-4): 191

    6. [6]

      [6] Cheng Y A, Gao S B, Wang F, et al. Journal of Northwest Agriculture & Forestry University: Natural Science Edition (程永安, 高双斌, 王枫, 等. 西北农林科技大学学报: 自然科学版), 2004, 32(Suppl): 91

    7. [7]

      [7] Lu J S, Xu J J, Tian J Y, et al. Chinese Journal of Applied Chemistry (卢菊生, 徐佳佳, 田久英, 等. 应用化学), 2010, 27(10): 1230

    8. [8]

      [8] Xiao Y B, Wu Y H, Zhang M, et al. Journal of Instrumental Analysis (肖亚兵, 吴延晖, 张曼, 等. 分析测试学报), 2007, 26(2): 235

    9. [9]

      [9] Wang J T, Ma W X, Lü S T, et al. Environmental Monitoring in China (汪军涛, 马卫兴, 吕松涛, 等. 中国环境监测), 1997, 13(4): 30

    10. [10]

      [10] Zhang A Y, Zhu Q R. Chinese Journal of Spectroscopy Laboratory (张爱英, 朱庆仁. 光谱实验室), 2013, 30(1): 38

    11. [11]

      [11] Yu R P, Hu Z Y, Ye M L, et al. Chinese Journal of Chromatography (虞锐鹏, 胡忠阳, 叶明立, 等. 色谱), 2012, 30(4): 409

    12. [12]

      [12] Zhu M, Lin S M, Yao Q, et al. Journal of Zhejiang University: Science Edition (朱敏, 林少美, 姚琪, 等. 浙江大学学报: 理学版), 2007, 34(3): 326

    13. [13]

      [13] Pantsar-Kallio M, Manninen P K. Fresenius J Anal Chem, 1996, 355(5/6): 716

    14. [14]

      [14] Namiesnik J, Rabajczyk A. Crit Rev Env Sci Tec, 2012, 42(4): 327  

    15. [15]

      [15] Burbridge D J, Koch I, Zhang J, et al. Chemosphere, 2012, 89(7): 838  

    16. [16]

      [16] Wang H J, Li Y H, Feng W Y, et al. Chinese Journal of Analytical Chemistry (王华建, 黎艳红, 丰伟悦, 等. 分析化学), 2009, 37(3): 433

    17. [17]

      [17] Andrle C M, Jakubowski N, Broekaert J A C. Spectrochim Acta Part B, 1997, 52(2): 189  

    18. [18]

      [18] Kovács R, Béni Á, Karosi R, et al. Food Chem, 2007, 105(3): 1209  

  • 加载中
    1. [1]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    6. [6]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    13. [13]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    19. [19]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(429)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return