Citation: YAN Xiong, JIANG Shao-Yong, WEI Hai-Zhen, YAN Yan, WU He-Pin, PU Wei. Improvement on Extraction and Determination Procedures of Boron Isotopic Composition in Tourmalines[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1654-1660. doi: 10.3724/SP.J.1096.2012.20492 shu

Improvement on Extraction and Determination Procedures of Boron Isotopic Composition in Tourmalines

  • Corresponding author: JIANG Shao-Yong, 
  • Received Date: 9 May 2012
    Available Online: 16 July 2012

    Fund Project: 本研究系国家自然科学基金(Nos. 41073002, 40973002)资助项目 (Nos. 41073002, 40973002)

  • Tourmaline was decomposed by using alkali fusion, and then separated and purified by three different procedures. It is found that both Fe3+ and Al3+ ions that are rich in tourmaline samples seriously affect the accurate determination of boron concentration by azomethine-H spectrophotometric method and also cause the loss of boron by specific adsorption when large amount of amorphous hydroxide precipitate formed in ion exchange columns. The addition of small amount of EDTA can eliminate the influence, but brings serious isobaric interference on boron isotopic analysis by TIMS. Finally, we establish a three-column ion-exchange procedure including the first mixed resin column, the peristaltic pump coupled boron specific resin column, and the second mixed resin column, which ensures the full recovery of boron (about 99%) from tourmaline samples with complex matrices. The positive thermal ionization mass spectrometry (PTIMS)-Cs2BO2+-static double-collection method was established by selecting H3-H4 Faraday cups and optimizing parameters in Zoom Optics (Focus Quad: 15; Dispersion Quad: -85) in a Triton TI mass spectrometer. The determined average 11B/10B value of NIST SRM 951 is 11B/10B=4.05044±0.00012 (2σ, n=8, 1 μg B), which is superior to the dynamic collection method in internal/external precision. A δ11B value of-0.3‰ for NIST SRM 951 through the same pretreatment procedure was obtained, indicating that there was no isotopic fractionation occurred during the extraction procedure. The comparison of boron isotopes in natural samples by TIMS and MC-ICP-MS after chemistry procedure turns out that δ11B values determined by the PTIMS-Cs2BO2+ method are in good agreement with that by MC-ICP-MS.
  • 加载中
    1. [1]

      1 Tonarini S, Pennisi M, Leeman W P. Chemical Geology, 1997, 142(1-2): 129-137

    2. [2]

      2 Foster G L, Ni Y, Haley B, Elliott T. Chemical Geology, 2006, 230(1-2): 161-174

    3. [3]

      3 LV Yuan-Yuan, XU Rong-Hua, ZHAO Ping, XIE Lie-Wen, LI He. Geochimica, 2008, 37(1): 1-8

    4. [4]

      吕苑苑, 许荣华, 赵 平, 谢烈文, 李 禾. 地球化学, 2008, 37(1): 1-8

    5. [5]

      4 MA Yun-Qi, XIAO Ying-Kai, ZHU Ge-Qin, JIANG Sheng-Xiang. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 250-255

    6. [6]

      马云麒, 肖应凯, 诸葛芹, 蒋生祥. 矿物岩石地球化学通报, 2010, 29(3): 250-255

    7. [7]

      5 MA Yun-Qi, XIAO Ying-Kai, HE Mao-Yong, XIAO Jun, SHEN Quan, JIANG Sheng-Xiang. Science in China D, Earth Sci., 2011, 41(7): 984-999

    8. [8]

      马云麒, 肖应凯, 贺茂勇, 肖 军, 沈 权, 蒋生祥. 中国科学D辑:地球化学, 2011, 41(7): 984-999

    9. [9]

      6 Trumbull R, Krienitz M S, Gottesmann B, Wiedenbeck M. Contrib Mineral Petrol, 2008, 155(1): 1-18

    10. [10]

      7 Pal D C, Trumbull R B, Wiedenbeck M. Chemical Geology, 2010, 277(3-4): 245-260

    11. [11]

      8 XIAO Ying-Kai, WANG Yun-Hui, CAO Hai-Xia. Chinese J. Anal. Chem., 1983, 11(8): 604-607

    12. [12]

      肖应凯, 王蕴慧, 曹海霞. 分析化学, 1983, 11(8): 604-607

    13. [13]

      9 LIU Wei-Guo, PENG Zi-Cheng, XIAO Ying-Kai, ZHANG Zhao-Feng. Chinese J. Anal. Chem., 2002, 30(3): 372-375

    14. [14]

      刘卫国, 彭子成, 肖应凯, 张兆峰. 分析化学, 2002, 30(3): 372-375

    15. [15]

      10 ZHANG Chong-Geng, XIAO Ying-Kai, SUN Ai-De, WANG Qing-Zhong, LIAO Bu-Yong. Chinese J. Anal. Chem., 2003, 31(4): 405-408

    16. [16]

      张崇耿, 肖应凯, 孙爱德, 王庆忠, 廖步勇. 分析化学, 2003, 31(4): 405-408

    17. [17]

      11 HE Mao-Yong, XIAO Ying-Kai, ZHAO Zhi-Qi, MA Yun-Qi, XIAO Jun, ZHANG Yan-Ling, LUO Chong-Guang, MA Hai-Zhou. Chinese J. Anal. Chem., 2011, 39(4): 552-555

    18. [18]

      贺茂勇, 肖应凯, 赵志琦, 马云麒, 肖 军, 张艳灵, 罗重光, 马海州. 分析化学, 2011, 39(4): 552-555

    19. [19]

      12 Musashi M, Oi T, OssakaT, Kakihana H. Anal. Chim. Acta, 1990, 231: 147-150

    20. [20]

      13 Kiss E. Anal. Chim. Acta, 1988, 211: 243-256

    21. [21]

      14 Xiao Y K, Beary E S, Fassett J D. International Journal of Mass Spectrometry, 1988, 85(2): 203-213

    22. [22]

      15 HE Mao-Yong, XIAO Ying-Kai, MA Yun-Qi, ZHANG Yan-Ling, WANG Xiu-Fang, XIAO Jun, WEI Hai-Zhen. Chinese J. Anal. Chem., 2009, 37(5): 703-706

    23. [23]

      贺茂勇, 肖应凯, 马云麒, 张艳灵, 王秀芳, 肖 军, 魏海珍. 分析化学, 2009, 37(5): 703-706

    24. [24]

      16 XIAO Jun, XIAO Ying-Kai, LIU Cong-Qiang, ZHAO Zhi-Qi, HE Mao-Yong, LIANG Zhong-Shan. Chinese Sci. Bull., 2009, 54(16): 2363-2371

    25. [25]

      肖 军, 肖应凯, 刘丛强, 赵志琦, 贺茂勇, 梁重山. 科学通报, 2009, 54(16): 2363-2371

    26. [26]

      17 Xiao Y K, Vocke R D, Swihart G H, Xiao Y. Anal. Chem., 1997, 69(24): 5203-5207

    27. [27]

      18 Nakamura E, Ishikawa T, Birck J, Allégre C J. Chemical Geology, 1992, 94(3): 193-204

    28. [28]

      19 Deyhle A. International Journal of Mass Spectrometry, 2001, 206(1-2): 79-89

    29. [29]

      20 Nakano T, Nakamura E. International Journal of Mass Spectrometry, 1998, 176(1-2): 13-21

    30. [30]

      21 Wei H Z, Xiao Y K, Sun A D, Zhang C G, Li S Z. International Journal of Mass Spectrometry, 2004, 235(2): 187-195

  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    3. [3]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return