Citation: WAN A-Jun, WANG Kun, ZHANG Hong-Cai, LI Hui-Li, WANG De-Nong. Modern Carbohydrate Microarray Bio-chip Technologies[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1780-1788. doi: 10.3724/SP.J.1096.2012.20448 shu

Modern Carbohydrate Microarray Bio-chip Technologies

  • Corresponding author: WAN A-Jun,  WANG De-Nong, 
  • Received Date: 27 April 2012
    Available Online: 16 June 2012

    Fund Project: 本文系中国国家自然科学基金项目(No. 51173104) (No. 51173104)上海纳米专项(No. 11nm0503500) (No. 11nm0503500)美国NIH基金项目(No. CA128416)资助 (No. CA128416)

  • Carbohydrate microarray (glyco-chip), is one of modern biotechnologies for monitoring the molecular interactions between carbohydrate ligands and other biomacromolecules. It is characterized by micro-scale, quickness, high sensitivity and high-throughput and is widely applicable in many fields. Its promising R & D areas include, but are not limited to, biology, basic medical research, clinical diagnostics, drug development and bio-material & reagent industry. This article intends to summarize methods that are currently used for the construction of glyco-chips, such as immobilization of either chemically modified or non-modified carbohydrates and procedures of self-assembly for production of three-dimensional glyco-chips. Current challenges and future trends in the R & D of glyco-chips are also discussed.
  • 加载中
    1. [1]

      1 Shin I, Park S, Lee M R. Chem-Eur J., 2005, 11(10): 2894-2901

    2. [2]

      2 Godula K, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(29): 9963-9965

    3. [3]

      3 Liu Y. Biochem. Soc. T, 2010, 38: 1361-1367

    4. [4]

      4 Galan M C, Corfield A P. Biochem. Soc. T., 2010, 38: 1368-1373

    5. [5]

      5 Huang C H, Chen Y Y, Wang C X, Zhu W, Ma H W, Jin G. Thin. Solid. Films., 2011, 519(9): 2763-2277

    6. [6]

      6 Tokunaga Y, Iwamoto T, Nakashima S, Shoji E, Nakata R. Tetrahedron. Lett., 2011, 52(2): 240-243

    7. [7]

      7 Kiessling L L,Cairo C W. Nat. Biotechnol., 2002, 20(3): 234-235

    8. [8]

      8 Liu Y,Palma A S, Feizi T. Biol. Chem., 2009, 390(7): 647-656

    9. [9]

      9 Wang D N. Proteomics, 2003, 3(11): 2167-2175

    10. [10]

      10 Seeberger P H, Werz D B. Nature, 2007, 446(7139): 1046-1051

    11. [11]

      11 Horlacher T, Oberli M A, Werz D B, Krock L, Bufali S, Mishra R, Sobek J, Simons K, Hirashima M, Niki T, Seeberger P H. Chembiochem., 2010, 11(11): 1563-1573

    12. [12]

      12 Stevens J, Blixt O, Paulson J C, Wilson I A. Nat. Rev. Microbiol., 2006, 4 (11): 1857-1864

    13. [13]

      13 Smith A E, Helenius A. Science, 2004, 304 (5668): 1237-1242

    14. [14]

      14 Fuster M M, Esko, J D. Nat. Rev. Cancer,2005, 5 (7): 1526-1542

    15. [15]

      15 Park S, Pai J, Han E H, Jun C H,Shin I. Bioconjugate. Chem., 2010, 21(7): 1246-1253

    16. [16]

      16 Szunerits S, Niedziolka-Jonsson J, Boukherroub R, Woisel P, Baumann J S, Siriwardena A. Anal. Chem., 2010, 82(19): 8203-8210

    17. [17]

      17 Chang C F, Pan J F, Lin C N, Wu I L, Wong C H, Lin C H. Glycobiology, 2011, 21(7): 895-902

    18. [18]

      18 Hoffmann-Roder A, Schoenhentz J, Wagner S, Schmitt E. Chem. Commun., 2011, 47(1): 382-384

    19. [19]

      19 Hsiao H Y, Chen M L, Wu H T, Huang L D, Chien W T, Yu C C, Jan F D. Sahabuddin S, Chang T C, Lin C C. Chem. Commun., 2011, 47(4): 1187-1189

    20. [20]

      20 Lee M R, Park S,Shin I. Methods. Mol. Biol., 2012, 808,103-1116

    21. [21]

      21 Oyelaran O, Gildersleeve J C. Curr. Opin. Chem. Biol., 2009, 13 (4): 406-1413

    22. [22]

      22 Tantakitti F, Burk-Rafel J, Cheng F, Egnatchik R, Owen T, Hoffman M, Weiss D N, Ratner D M. Langmuir, 2012, 28 (17): 6950-6959

    23. [23]

      23 Wang D N, Liu S Y, Trummer B J, Deng C, Wang A L. Nat. Biotechnol., 2002, 20(3): 275-281

    24. [24]

      24 Deng L Q, Norberg O, Uppalapati S, Yan M D, Ramstrom O. Org Biomol. Chem., 2011, 9(9): 3188-3198

    25. [25]

      25 Tamborrini M, Liu X Y, Mugasa J P, Kwon Y U, Kamena F, Seeberger P H, Pluschke G. Bioorgan. Med. Chem., 2010, 18(11): 3747-3752

    26. [26]

      26 Seo J H, Kim C S, Hwang B H, Cha H J. Nanotechnol., 2010, 21(21): 215101

    27. [27]

      27 Dyukova V I, Shilova N V, Galanina O E, Rubina A Y, Bovin N V. Bba-Gen. Subjects., 2006,1760(4): 603-609

    28. [28]

      28 Feizi T. Int. Exp. Pathol., 2004, 85(4): A51-A52

    29. [29]

      29 Feizi T. Febs. J, 2006, 273: 27

    30. [30]

      30 Feizi T, Chai W G. Nat. Rev. Mol. Cell. Bio., 2004, 5(7): 582-588

    31. [31]

      31 Feizi T, Fazio F, Chai W C, Wong C H. Curr. Opin. Struc. Biol., 2003, 13(5): 637-645

    32. [32]

      32 Wang C C, Huang Y L, Ren C T, Lin C W, Hung J T, Yu J C, Yu A L, Wu C Y, Wong C H. Proc. Natl. Acad. Sci. USA., 2008, 105(33): 11661-11666

    33. [33]

      33 Wang D N, Carroll G T, Turro N J, Koberstein J T, Kovac P, Saksena R, Adamo R, Herzenberg L A, Steinman L. Proteomics, 2007,7(2): 180-184

    34. [34]

      34 Wang D. Methods. Mol. Biol., 2012, 808: 241-249

    35. [35]

      35 Willats W G T, Rasmussen S E, Kristensen T, Mikkelsen J D, Knox J P. Proteomics, 2002, 2(12): 1666-1671

    36. [36]

      36 Zou L, Pang H L, Chan P H, Huang Z S, Gu L Q, Wong K Y. Analyst, 2008, 133(9): 1195-1200

    37. [37]

      37 Park S, Lee M R, Shin I. Bioconjugate. Chem., 2009, 20(1): 155-162

    38. [38]

      38 Ebran J P, Dendane N, Melnyk O. Methods. Mol. Biol., 2012, 808: 377-391

    39. [39]

      39 Sharma P, Basir S F, Nahar P. J. Colloid. Interf. Sci., 2010, 342(1): 202-204

    40. [40]

      40 Mamidyala S K, Ko K S, Jaipuri F A, Park G, Pohl N L. J. Fluorine. Chem., 2006, 127(4-5): 571-579

    41. [41]

      41 Norberg O, Deng L Q, Aastrup T, Yan M D, Ramstrom O. Anal. Chem., 2011, 83(3): 1000-1007

    42. [42]

      42 Ratner D M, Seeberger P H. Curr. Pharm. Design., 2007, 13(2): 173-183

    43. [43]

      43 Tong Q, Wang X, Wang H, Kubo T, Yan M. Anal. Chem., 2012, 84 (7): 3049-3052

    44. [44]

      44 Patwa T, Li C, Simeone D M, Lubman D M. Mass. Spectrom. Rev., 2010, 29(5): 830-844

    45. [45]

      45 Kosik O, Auburn R P, Russell S, Stratilova E, Garajova S, Hrmova M, Farkas V. Glycoconjugate. J., 2010, 27(1): 79-87

    46. [46]

      46 Park S, Lee M R, Shin I. Chem. Commun., 2008, (37): 4389-4399

    47. [47]

      47 Park S, Lee M R, Pyo S J, Shin I. J. Am. Chem. Soc., 2004, 126(15): 4812-4819

    48. [48]

      48 Park S, Lee M R, Shin I. Nat. Protoc., 2007, 2(11): 2747-2758

    49. [49]

      49 GuptaG, Surolia A, Sampathkumar S G. Omics, 2010, 14(4): 419-436

    50. [50]

      50 Pond M A, Zangmeister R A. Talanta, 2012, 91(15): 134-139

    51. [51]

      51 Lucas J M. Allergol. Immunopath, 2010, 38(3): 153-161

    52. [52]

      52 Zhang Y L, Campbell C, Li Q A, Gildersleeve J C. Mol. Biosyst., 2010, 6(9): 1583-1591

    53. [53]

      53 Han E, Ding L, Jin S, Ju H X. Biosens. Bioelectron., 2011, 26(5): 2500-2505

    54. [54]

      54 Zhang J, Pourceau G, Meyer A, Vidal S, Praly J P, Souteyrand E, Vasseur J J, Morvan F, Chevolot Y. Chem. Commun, 2009, (44): 6795-6797

    55. [55]

      55 Suvorov A, Takser L. Environ. Health. Persp., 2010, 118(1): 97-102

    56. [56]

      56 LiB Z, Cheng J S, Qiao B, Yuan Y J. J. Ind. Microbiol. Biot., 2010, 37(1): 43-55

    57. [57]

      57 Ratner D M, Seeberger P H. Curr. Pharm. Design., 2007, 13(2): 173-183

    58. [58]

      58 Tetala K K R, Heikema A P, Pukin A V, Weijers C A G M, Tio-Gillen A P, Gilbert M, Endtz H P, van Belkum A, Zuilhof H,Visser G M, Jacobs B C, van Beek T A. J. Med. Chem., 2011, 54(10): 3500-3505

    59. [59]

      59 Pieters R J. Adv. Exp. Med. Biol., 2011, 715: 227-240

    60. [60]

      60 Wang X, Ramstrom O, Yan M D. Chem. Commun, 2011, 47(14): 4261-4263

    61. [61]

      61 Berger R, Delamarche E, Lang H P, Gerber C, Gimzewski J K, Meyer E, Guntherodt H J. Science, 1997, 276(5321): 2021-2024

    62. [62]

      62 Nelson J.Science, 2001, 293(5532): 1059-1060

    63. [63]

      63 Yan D Y, Zhou Y F, Hou J. Science, 2004, 303(5654): 65-67

    64. [64]

      64 Wiesner U, Arora H, Du P, Tan K W, Hyun J K, Grazul J, Xin H L, Muller D A, Thompson M O. Science, 2010, 330(6001): 214-219

    65. [65]

      65 EstevezJ M, Velasquez S M, Ricardi M M, Dorosz J G, Fernandez P V, Nadra A D, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen C E, Ulvskov P, Petersen B L, Somerville C, Iusem N D. Science, 2011, 332(6036): 1401-1403

    66. [66]

      66 Zhang X J, Yadavalli V K. Anal. Chim. Acta, 2009, 649(1): 1-7

    67. [67]

      67 PeraN P, Branderhorst H M, Kooij R, Maierhofer C, van der Kaaden M, Liskamp R M J, Wittmann V, Ruijtenbeek R, Pieters R J. Chembiochem., 2010,11(13): 1896-1904

    68. [68]

      68 Huang K T, Gorska K, Alvarez S, Barluenga S, Winssinger N. Chembiochem,. 2011, 12(1): 56-60

    69. [69]

      69 Dhayal M, Ratner D A. Langmuir, 2009, 25(4): 2181-2187

    70. [70]

      70 Dyukova V I, Dementieva E I, Zubtsov D A, Galanina O E, Bovin N V. Anal. Biochem., 2005, 347 (1): 94-105

    71. [71]

      71 Ke B B, Wan L S, Xu Z K. Langmuir, 2010, 26(11): 8946-8952

    72. [72]

      72 Pulsipher A, Yousaf M N. Chem. Commun, 2011, 47(1): 523-525

    73. [73]

      73 Zhou X C, Turchi C, Wang D N. J. Proteome. Res., 2009, 8(11): 5031-5040

    74. [74]

      74 Tyagi A, Wang X, Deng L Q, Ramstrom O, Yan M D. Biosens. Bioelectron., 2010, 26(2): 344-350

    75. [75]

      75 Tantakitti F, Burk-Rafel J, Cheng F, Egnatchik R, Owen T, Hoffman M, Weiss D N, Ratner D M. Langmuir, 2012, 28 (17): 6950-6959

    76. [76]

      76 Lonardi E, Balog C I A, Deelder A M, Wuhrer M. Expert. Rev. Proteomic, 2010, 7(5): 761-774

    77. [77]

      77 Gregory T C, Wang D, Nicholas J T, Jeffrey T K. Langmuir, 2006, 22(6): 2899-2905

    78. [78]

      78 Wang D N, Carroll G T, Turbo N J, Kobestein J T, Kovac P, Saksena R, Adamo R, Herzenberg L A, Steinman L. Proteomics, 2007, 7(2): 180-118

    79. [79]

      79 Scurr D J, Horlacher T, Oberli M A, Werz D B, Kroeck L, Bufali S, Seeberger P H, Shard A G, Alexander M R. Langmuir, 2010, 26(22): 17143-17155

    80. [80]

      80 Li Y S, Arigi E, Eichert H, Levery S B. J. Mass. Spectrom., 2010, 45(5): 504-519

    81. [81]

      81 Gao J Q, Liu C, Liu D J, Wang Z X, Dong S J. Talanta, 2010, 81(4-5): 1816-1820

    82. [82]

      82 Zeng Z, Hincapie M, Haab B B, Hanash S, Pitteri S J, Kluck S, Hogan J M, Kennedy J, Hancock W S. J. Chromatogr. A, 2010, 1217(19): 3307-3315

    83. [83]

      83 Zhu X Y, Holtz B, Wang Y N, Wang L X, Orndorff P E, Guo A. J. Am. Chem. Soc., 2009, 131(38): 13646-13650

    84. [84]

      84 Katrlik J, Svitel J, Gemeiner P, Kozar T, Tkac J. Med. Res. Rev., 2010, 30(2): 394-418

    85. [85]

      85 Szczepanek J, Styczynski J, Haus O, Tretyn A, Wysocki M. Arch. Immunol. Ther. Ex., 2011, 59(1): 61-68

    86. [86]

      86 Wendeln C, Ravoo B J. Langmuir, 2012, 28 (13): 15527-15538

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

Metrics
  • PDF Downloads(0)
  • Abstract views(570)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return