Citation: HU Yue, WANG Xue-Jiao, LI Heng, GAO Wen-Yun. Determination of Steady-State Kinetic Parameters of 1-Deoxy-D-xylulose- 5-phosphate Synthase by Pre-column Derivatization High Performance Liquid Chromatography Using 2,4-Dinitrophenylhydrazine as Derivative Reagent[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1859-1864. doi: 10.3724/SP.J.1096.2012.20447 shu

Determination of Steady-State Kinetic Parameters of 1-Deoxy-D-xylulose- 5-phosphate Synthase by Pre-column Derivatization High Performance Liquid Chromatography Using 2,4-Dinitrophenylhydrazine as Derivative Reagent

  • Corresponding author: GAO Wen-Yun, 
  • Received Date: 27 April 2012
    Available Online: 3 July 2012

    Fund Project: 本文系国家自然科学基金项目(No.21172179) (No.21172179)西北大学研究生创新基金(No.10YYB02)资助 (No.10YYB02)

  • Carbonyl containing compounds can normally be determined by high performance liquid chromatography (HPLC) using pre-column derivatization with 2,4-dinitrophenylhydrazine (DNPH). Using this method, the steady-state kinetic parameters of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. First, the enzymatic product 1-deoxy-D-xylulose-5-phosphate (DXP) was dephosphorylated by alkaline phosphatase, then the product 1-deoxy-D-xylulose (DX) was derived with DNPH in acidic solution to give the corresponding hydrazones which was subsequently determined by HPLC. The optimum derivatization conditions were as follows: acidity 1.5% perchloric acid, reaction temperature 37℃, reaction time of 60 min, molar ratio of DNPH to DXP 6:1. The HPLC was run with a linear gradient of methanol-water solvent system: 0 min, 40% methanol; 17 min, 80% methanol; 18 min, 40% methanol; 20 min, 40% methanol. The method has a detection limit of 1 mg/L for DXP and the linear correlation coefficient in the range of 0.005-1 g/L was 0.999. The relative standard deviation is less than 5.0%. The steady-state kinetic parameters of DXS determined with this method are identical with the reported data.
  • 加载中
    1. [1]

      1 Eisenreich W. Bacher A, Arigoni D, Rohdich F. Cell. Mol. Life Sci., 2004, 61(5): 1401-1426

    2. [2]

      2 Rohmer M. In Comprehensive Natural Products II, Chemistry and Biology, Mander L, Liu H W. Eds. Elsevier, 2010, 1: 517-555

    3. [3]

      3 Hunter W. J. Biol. Chem., 2007, 282(30): 21573-21577

    4. [4]

      4 JIN Rong, ZHU Chang-Qing, XU Chang-Jie. Chinese J. Cell Biol., 2007, 29(9): 706-712

    5. [5]

      金 蓉, 朱长青, 徐昌杰. 细胞生物学杂志, 2007, 29(9): 706-712

    6. [6]

      5 Fazia B, Naima H, Odile M, Franoise S, Michel H, Paul M V, Philippe L. Eur. J. Pharmacol., 2004, 485(3): 227-234

    7. [7]

      6 Lange B M, Wildung M R, David M, Rodney C. Proc. Natl. Acad. Sci. USA, 1998, 95(5): 2100-2104

    8. [8]

      7 Querol J, Besumbes O, Lois L M, Boronat A, Imperial S. Anal. Biochem., 2001, 296(9): 101-105

    9. [9]

      8 Chahed K, Oudin A, Guivarc'h N, Guivarc'h N, Hamdi S, Chénieux J C, Rideau M, Clastre M. Plant Physio. Biochem., 2000, 38(3): 559-566

    10. [10]

      9 Feurle J, Jomaa H, Wilhelm M, Gutsche B, Herderich M. J. Chromatogr. A, 1998, 803(2): 111-119

    11. [11]

      10 Han Y S, Cesare S, Robert H, Verpoorte R. J. Chromatogr. A, 2003, 986(2): 291-296

    12. [12]

      11 Altincicek B, Hintz M, Sanderbrand S, Wiesner J. FEMS Microbio. Lett., 2000, 190(2): 329-333

    13. [13]

      12 Brammer L A, Caren F M. Org. Lett., 2009, 11(20): 4748-4751

    14. [14]

      13 Zhou Y F, Cui Z, Li H, Tian J, Gao W Y. Bioorg. Chem., 2010, 38(3): 120-123

    15. [15]

      14 Li H, Tian J, Wang H, Yang S Q, Gao W Y. Helv. Chim. Acta, 2010, 93(9): 1745-1750

    16. [16]

      15 Shigehisa U, Yohei I, Naoki K. J. Chromatogr. B, 2011, 879(11): 1282-1289

    17. [17]

      16 Zhu Ya-Mei, Cui Qun, Wang Hai-Yan. Chinese Journal of Chromatography, 2010, 28(1): 159-163

    18. [18]

      朱鸭梅, 崔 群, 王海燕. 色谱, 2010, 28(1): 159-163

    19. [19]

      17 YAN Kun-Ping, JING Xiao-Dan, HAN Jing, DAN Ning, CHEN Chao. Chinese J. Anal. Chem., 2009, 37(10): 1515-1518

    20. [20]

      严坤平, 景小丹, 韩 静, 但 宁, 陈 超. 分析化学 , 2009, 37(10): 1515-1518

    21. [21]

      18 WANG Jing-Yan, ZHU Sheng-Geng, XU Chang-Fa. Biochemistry. Beijing: Higher Education Press, 2002: 355-363

    22. [22]

      王镜岩, 朱胜庚, 徐长法. 生物化学. 北京: 高等教育出版社, 2002: 355-363

  • 加载中
    1. [1]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    2. [2]

      Tong Wang Liangyu Hu Shiqi Chen Xinqiang Fu Rui Wang Kun Li Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128

    3. [3]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Danfeng YiYulin Li . MOF/MOF nanosheets S-scheme heterojunction for accelerated charge kinetics and efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(4): 100220-0. doi: 10.1016/j.actphy.2025.100220

    6. [6]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    18. [18]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return