Citation: DING Feng-Li, CHENG Qiong, LI Jun-Feng, JIANG Fei-En. Magnetic Nanospheres-based Electrochemical Immunoassay Amplified by Hyperbranched Polymer[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(10): 1514-1518. doi: 10.3724/SP.J.1096.2012.11447 shu

Magnetic Nanospheres-based Electrochemical Immunoassay Amplified by Hyperbranched Polymer

  • Corresponding author: CHENG Qiong, 
  • Received Date: 23 December 2011
    Available Online: 22 April 2012

    Fund Project: 本文系浙江省自然科学基金(No.Y405468) (No.Y405468) 浙江省科技计划(No.2007F70008)嘉兴市科技计划项目(No.2008AY2017)资助 (No.2007F70008)嘉兴市科技计划项目(No.2008AY2017)

  • A novel ultra-sensitive immunoassay for Hepatitis B surface antigen (HBsAg) was proposed. Magnetic nanosphere functionalized with carboxyl group was activated with 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride/N-hydroxy-succinimimide (EDC/NHS), and then Hepatitis B surface antibody (HBsAb) was covalently immobilized on the surface. Hepatitis B secondary antibody labeled with horseradish peroxide (HRP) was covalently linked to the hyperbranched polymer(HBP). The antibody could capture the HBsAg when the antibody-modified magnetic nanosphere was incubated with HBsAg. Then the HBP conjugate was added, and a sandwich immunocomplex formed on the surface of magnetic nanospheres. The nanosphere with sandwich complex was separated magnetically from sample solution, and then incubated in the buffer solution containing 2-amino hydroxy benzene and hydrogen peroxide. The HRP could catalyze the reaction between 2-amino hydroxy benzene and hydrogen peroxide to produce electroactive product 2-hydroxy-3-amino phenoxazine. When using differential pulse voltammetry. the peak current was linear with the concentration of HBsAg in the range of 0.05 to 10 μg/L under the optimum conditions. The detection limit was found to be 0.008 μg/L, and the linear regression equation was I(μA)=0.140+16.80C(μg/L) with r=0.9995. This method was applied to analyze real samples.
  • 加载中
    1. [1]

      1 Zhang Y, Wang H, Yan B N, Zhang Y W, Li J S, Shen G L, Yu R Q. Journal of Immunological Methods, 2008, 332(1-2): 103-111

    2. [2]

      2 Wang J, Xu D, Erdem A, Polsky R, Salazar M A. Talanta, 2002, 56(5): 931-938

    3. [3]

      3 Kima G, Rand A G, Letcher S V. Biosensors and Bioelectronics, 2003, 18(1): 91-99

    4. [4]

      4 Liu Z M, Yang H F, Li Y F, Liu Y L, Shen G L, Yu R Q. Sensors and Actuators B, 2006, 113(2): 956-962

    5. [5]

      5 CHENG Gui-Fang, HUANG Cui-Hua, ZHAO Jie, TAN Xue-Lian, HE Pin-Gang, FANG Yu-Zhi. Chinese J. Anal. Chem., 2009, 37(2): 169-173

    6. [6]

      程圭芳, 黄翠华, 赵 洁, 谭雪莲, 何品刚, 方禹之. 分析化学, 2009, 37(2): 169-173

    7. [7]

      6 CHENG Qiong, PENG Tu-Zhi, LIU Ai-Li. Acta Chimica Sinica, 2004, 62(24): 2447-2450

    8. [8]

      程 琼, 彭图治, 刘爱丽. 化学学报, 2004, 62(24): 2447-2450

    9. [9]

      7 CHE Hong-Li, WANG Shi-Ping, WU Zheng-Ming, CHEN Yuan, WU Zhao-Yang, SHEN Guo-Li. Chinese J. Anal. Chem., 2008, 36(11): 1455-1459

    10. [10]

      车宏莉, 汪世平, 吴争鸣, 陈 媛, 吴朝阳, 沈国励. 分析化学, 2008, 36(11): 1455-1459

    11. [11]

      8 Varshney M, Li Y B. Biosensors and Bioelectronics, 2007, 22(11): 2408-2414

    12. [12]

      9 SU Jin-Jin, LI Sheng-Biao, ZHAO Li-Feng, HOU Xue-Li, YIN Xiao-Ping, BAI Yi-Qiong, LONG Guang-Dou, HUANG Wei. New Chemical Materials, 2008, 36(9): 3-5

    13. [13]

      苏津津, 李盛彪, 赵丽凤, 侯雪丽, 尹小平, 白一穷, 龙光斗, 黄 维. 化工新型材料, 2008, 36(9): 3-5

    14. [14]

      10 Ge J, Yan M, Lu D N, Zhang M L, Liu Z. Biochemical Engineering Journal, 2007, 36(2): 93-99

    15. [15]

      11 Shen G Y, Liu M H, Cai X W, Lu J L. Anal. Chim. Acta, 2008, 630(1): 75-81

    16. [16]

      12 Shen G Y, Cai C B, Wang K, Lu J L. Anal. Biochem., 2011, 409(1): 22-27

    17. [17]

      13 QIU Guang-Ming, SUN Zong-Hua. Chinese J. Chem. Reagent, 1993, 15(4): 234-237

    18. [18]

      邱广明, 孙宗华. 化学试剂, 1993, 15(4): 234-237

    19. [19]

      14 Zeng H M, Lai Q Y, Liu X Q, Wen D, Ji X Y. Journal of Applied Polymer Science, 2007, 106(5): 3474-3480

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(351)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return