Citation: GAO Ningning, XIE Sujuan, LIU Shenglin, LIU Kefeng, LI Xiujie, XU Longya. Vapor-phase silylation of MCM-22 zeolite with various SiO2/Al2O3 molar ratios[J]. Chinese Journal of Catalysis, ;2013, 34(3): 612-619. doi: 10.3724/SP.J.1088.2013.20932 shu

Vapor-phase silylation of MCM-22 zeolite with various SiO2/Al2O3 molar ratios

  • Corresponding author: XIE Sujuan, 
  • Received Date: 15 September 2012
    Available Online: 12 October 2012

    Fund Project: 国家重点基础研究发展计划(973计划, 2009CB623501). (973计划, 2009CB623501)

  • MCM-22 precursor with various SiO2/Al2O3 molarratios was treated by vapor-phase silylation. MCM-22 zeolite and its products of vapor-phase silylation were characterized by X-ray diffraction, solid state nuclear magnetic resonance, N2 adsorption-desorption, and toluene adsorption techniques. The results showed that Si(OH)2 pillaring structure was formed in the interlayer of MCM-22 with SiO2/Al2O3 molarratios of 50-100 without extraction of framework aluminum through vapor-phase silylation, resulting in the expansion of interlayer distance and the increase of micropore volume. The N2 adsorption-desorption isotherms of MCM-22 zeolite before and after silylation were analyzed by the density functional theory, and the specific surface area and pore volume of 10 member ring (10 MR) micropores and those of the supercage system were successfully obtained. As a result of vapor-phase silylation, the specific surface area and pore volume of the supercage system increased, while those of 10 MR micropores decreased. The equilibrium adsorption amount of toluene over MCM-22 zeolite with various SiO2/Al2O3 molar ratios was enhanced after vapor-phase silylation.
  • 加载中
    1. [1]

      1 Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. Science, 1994, 264: 1910

    2. [2]

      2 Corma A, Martínez-Soria V, Schnoeveld E. J Catal, 2000, 192: 163

    3. [3]

      3 Corma A, Martínez-Triguero J. J Catal, 1997, 165: 102

    4. [4]

      4 Wu P, Komatsu T, Yashima T. Microporous Mesoporous Mater, 1998, 22: 343

    5. [5]

      5 Zhang Z, Niu X, Liu S, Zhu X, Yu H, Xu L. Catal Commun, 2008, 9: 60

    6. [6]

      6 谢伟, 刘月明, 汪玲玲, 吴鹏. 催化学报 (Xie W, Liu Y M, Wang L L,Wu P. Chin J Catal), 2010, 31: 502

    7. [7]

      7 Bejblová M, Procházková D, Čejka J. ChemSusChem, 2009, 2: 486

    8. [8]

      8 Tsai T-C, Liub S-B, Wang I. Appl Catal A, 1999, 181: 355

    9. [9]

      9 Liu Sh L, Li X J, Xin W J, Xie S J, Zeng P, Zhang L X, Xu L Y. J Nat Gas Chem, 2010, 19: 482

    10. [10]

      10 van Miltenburg A, Pawlesa J, Bouzga A M, Žilková N, Čejka J, Stöcker M. Top Catal, 2009, 52: 1190

    11. [11]

      11 van Miltenburg A, Pawlesa J, Bouzga A M, Čejka J, Stöcker M. Stud Surf Sci Catal, 2008, 174: 937

    12. [12]

      12 Liu K F, Xie S J, Xu G L, Li Y N, Liu S L, Xu L Y. Appl Catal A, 2010, 383: 102

    13. [13]

      13 刘盛林, 郭晓野, 张泽凯, 谢素娟, 戴洪义, 徐龙伢. 石油学报 (Liu Sh L, Guo X Y, Zhang Z K, Xie S J, Dai H Y, Xu L Y. Acta Petrol Sin), 2008, 24(suppl): 88

    14. [14]

      14 Roth W J, Kresge C T, Vartuli J C, Leonowicz M E, Fung A S, McCullen S B. Stud Surf Sci Catal, 1995, 94: 301

    15. [15]

      15 王保玉, 吴建梅, 李牛, 袁忠勇, 项寿鹤. 催化学报 (Wang B Y, Wu J M, Li N, Yuan Zh Y, Xiang Sh H. Chin J Catal), 2007, 28: 398

    16. [16]

      16 He Y J, Nivarthy G S, Eder F, Seshan K, Lercher J A. Microporous Mesoporous Mater, 1995, 25: 207

    17. [17]

      17 Barth J O, Kornatowski J, Lercher J A. J Mater Chem, 2002, 12: 369

    18. [18]

      18 Corma A, Fornés V, Martínez-Triguero J, Pergher S B. J Catal, 1999, 186: 57

    19. [19]

      19 Wu P, Nuntasri D, Ruan J, Liu Y, He M, Fan W, Terasaki O, Tatsumi T. J Phys Chem B, 2004, 108: 19126

    20. [20]

      20 Corma A, Fornés V, Pergher S B, Maesen T L M, Buglass J G. Nature, 1998, 396: 353

    21. [21]

      21 Ogino I, Nigra M M, Hwang S J, Ha J M, Rea T, Zones S I, Katz A. J Am Chem Soc, 2011, 133: 3288

    22. [22]

      22 Wu P, Ruan J F, Wang L L, Wu L L, Wang Y, Liu Y M, Fan W B, He M Y, Terasaki O, Tatsumi T. J Am Chem Soc, 2008, 130: 8178

    23. [23]

      23 Inagaki S, Tatsumi T. Chem Commun, 2009: 2583

    24. [24]

      24 Ikeda T, Akiyama Y, Oumi Y, Kawai A, Mizukami F. Angew Chem, Int Ed, 2004, 43: 4892

    25. [25]

      25 Maheshwari S, Jordan E, Kumar S, Bates F S, Lee P R, Shantz D F, Tsapatsis M. J Am Chem Soc, 2008, 130: 1507

    26. [26]

      26 Wang L L, Wang Y, Liu Y M, Wu H H, Li X H, He M Y, Wu P. J Mater Chem, 2009, 19: 8594

    27. [27]

      27 Inagaki S, Imai H, Tsujiuchi S, Yakushiji H, Yokoi T, Tatsumi T. Microporous Mesoporous Mater, 2011, 142: 354

    28. [28]

      28 Kolodziejski W, Zicovich-Wilson C, Corell C, Pérez-Pariente J, Corma A. J Phys Chem, 1995, 99: 7002

    29. [29]

      29 Lawton S L, Fung A S, Kennedy G J, Alemany L B, Chang C D, Hatzikos G H, Lissy D N, Rubin M K, Timken H C, Steuernagel S, Woessner D E. J Phys Chem, 1996, 100: 3788

    30. [30]

      30 Brunauer S, Deming L S, Deming W E, Telle E. J Am Chem Soc, 1940, 62: 1723

    31. [31]

      31 Olivier J P, Occelli M L. J Phys Chem B, 2001, 105: 623

    32. [32]

      32 Olivier J P, Occelli M L. Microporous Mesoporous Mater, 2003, 57: 291

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    20. [20]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

Metrics
  • PDF Downloads(0)
  • Abstract views(366)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return