Citation: Wen-li LU, Jun-gang WANG, De-kui SUN, Zhong-yi MA, Cong-biao CHEN, Bo HOU, De-bao LI. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091 shu

Research progress of microstructure for cobalt-based F-T catalysts

Figures(9)

  • Fischer-Tropsch synthesis (FTS) is a promising route to produce various olefins and fine chemicals from non-petroleum carbon sources that can be used to produce synthesis gas, such as coal, natural gas and biomass. Cobalt-based catalysts have gained more attention in FTS for the academic research and industrial applications, owing to their excellent catalytic properties such as low water-gas-shift activity, great Fischer-Tropsch reaction activity and high chain growth probability. The structure of the microscopic active site and the surface adsorption of the cobalt-based catalyst during the Fischer-Tropsch progress have an effect on the product distribution and catalytic performance. In this review, we summarized some advancements in the development of cobalt-based F-T catalysts focusing on the effects of particle size, crystal phase, crystal plane and microscopic active site, with emphasis on the research from the types, surface adsorption behavior and characterization techniques of microscopic active site. Some suggestions for the development of cobalt-based F-T catalysts in the future are also given.
  • 加载中
    1. [1]

      DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203.  doi: 10.1021/ja901006x

    2. [2]

      SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S I, YAKUBA E S, MIYCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91.  doi: 10.1134/S0023158417010062

    3. [3]

      LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287.  doi: 10.1021/ja408521w

    4. [4]

      IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Cata A: Gen,1997,161(1):59−78.

    5. [5]

      BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VANDILLEN A J, DEJONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964.  doi: 10.1021/ja058282w

    6. [6]

      XIONG H, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. J Catal,2011,278(1):26−40.  doi: 10.1016/j.jcat.2010.11.010

    7. [7]

      (QIU Cheng-wu, WU Bao-shan, MENG Shao-cong, LI Yong-wang. Effects of Co/SiO2 particle size on Fischer-Tropsch synthesis: Study by TPD and DRIFTS[J]. Acta Chim Sin,2015,73(7):690−698.  doi: 10.6023/A15020133

    8. [8]

      QI Z, CHEN L, ZHANG S, SU J, SOMORJAI G A. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2020,602:117701.  doi: 10.1016/j.apcata.2020.117701

    9. [9]

      RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by Time-Resolved Chemical Transient Kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419.  doi: 10.1002/anie.201701186

    10. [10]

      TUXEN A, CARENCO S, CHINTAPALLI M, ESCUDERO C, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONIDCS F, BEBERWYCK B, ALIVISATOS A P, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278.  doi: 10.1021/ja3105889

    11. [11]

      MITCHELL R W, LLOYD D C, VAN DE WATER L G A, ELLIS P R, METCALFE K A, SIBBALD C, DAVIES L H, ENACHE D I, KELLY G J, BOYES E D, GAI P L. Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2018,8(9):8816−8829.  doi: 10.1021/acscatal.8b02320

    12. [12]

      MARGOLIN H. Constitution of binary alloys[J]. J Am Chem Soc,1959,81(10):2600−2600.

    13. [13]

      KITAKAMI O, SATO H, SHIMADA Y, SATO F, TANAKA M. Size effect on the crystal phase of cobalt fine particles[J]. Phys Rev B,1997,56(21):13849−13854.  doi: 10.1103/PhysRevB.56.13849

    14. [14]

      TSAKOUMIS N E, PATANOU E, LOGDBERG S, JOHNSEN R E, MYRATAD R, VAN BEEK W, RYTTER E, BLEKKAN E A. Structure-performance relationships on Co-based Fischer-Tropsch synthesis catalysts: The more defect-free, the better[J]. ACS Catal,2019,9(1):511−520.  doi: 10.1021/acscatal.8b03549

    15. [15]

      GARCES L J, HINCAPIE B, ZERGER R, SUIB S L. The effect of temperature and support on the reduction of cobalt oxide: An in situ X-ray diffraction study[J]. J Phys Chem C,2015,119(10):5484−5490.  doi: 10.1021/jp5124184

    16. [16]

      VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038.  doi: 10.1039/c3cp52506f

    17. [17]

      LYU S, WANG L, ZHANG J H, LIU C, SUN J M, PENG B, WANG Y, RAPPE KENNETH G, ZHANG Y H, LI J L, NIE L. Role of active phase in Fischer-Tropsch synthesis: Experimental evidence of CO activation over single-phase cobalt catalysts[J]. ACS Catal,2018,8(9):7787−7798.  doi: 10.1021/acscatal.8b00834

    18. [18]

      ZIJLSTRA B, BROOS R J P, CHEN W, OOSTERBEEK H, FILOT I A W, HENSEN E J M. Coverage effects in CO dissociation on metallic cobalt nanoparticles[J]. ACS Catal,2019,9(8):7365−7372.  doi: 10.1021/acscatal.9b01967

    19. [19]

      PETERSEN M A, VAN DEN BERG J A, VAN HELDEN P. Revisiting CO activation on Co catalysts: Impact of step and kink sites from DFT[J]. ACS Catal,2017,7(3):1984−1992.  doi: 10.1021/acscatal.6b02843

    20. [20]

      ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear alpha-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7(20):4736−4755.  doi: 10.1039/C7CY01764B

    21. [21]

      ZHAO Y H, SUN K J, MA X F, LIU J X, SUN D P, SU H Y, LI W X. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion[J]. Angew Chem Int Ed,2011,50(23):5335−5338.  doi: 10.1002/anie.201100735

    22. [22]

      SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977.  doi: 10.1039/C7CY00706J

    23. [23]

      ZHANG R G, KANG L, LIU H X, HE L L, WANG B J. Insight into the C-C chain growth in Fischer-Tropsch synthesis on HCP Co(10-10) surface: The effect of crystal facets on the preferred mechanism[J]. Comp Mater Sci,2018,145:263−279.  doi: 10.1016/j.commatsci.2018.01.013

    24. [24]

      QIN C, HOU B, WANG J G, WANG Q, WANG G, YU M T, CHEN C B, JIA L T, LI D B. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455.  doi: 10.1021/acscatal.8b01333

    25. [25]

      VAN SANTEN R A. Complementary structure sensitive and insensitive catalytic relationships[J]. Accounts Chem Res,2009,42(1):57−66.  doi: 10.1021/ar800022m

    26. [26]

      AGRAWAL R, PHATAK P, SPANU L. Effect of phase and size on surface sites in cobalt nanoparticles[J]. Catal Today,2018,312:174−180.  doi: 10.1016/j.cattod.2018.03.064

    27. [27]

      BOELLER B, DURNER K M, WINTTERLIN J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy[J]. Nat Catal,2019,2(11):1027−1034.  doi: 10.1038/s41929-019-0360-1

    28. [28]

      PESTAMAN R, CHEN W, HENSEN E. Insight into the rate-determining step and active sites in the Fischer-Tropsch reaction over cobalt catalysts[J]. ACS Catal,2019,9(5):4189−4195.  doi: 10.1021/acscatal.9b00185

    29. [29]

      STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Model Simul Mater Sc, 2012, 20(4).

    30. [30]

      BANERJEE A, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. Origin of the formation of nanoislands on cobalt catalysts during Fischer-Tropsch synthesis[J]. ACS Catal,2015,5(8):4756−4760.  doi: 10.1021/acscatal.5b01169

    31. [31]

      WANG B J, LIANG D L, GUAN Z, LI D B, ZHANG D B, ZHANG R G. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem C,2020,124(10):5749−5758.  doi: 10.1021/acs.jpcc.0c00611

    32. [32]

      LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis[J]. ACS Catal,2019,9(8):7073−7089.  doi: 10.1021/acscatal.9b00352

    33. [33]

      VAN HELDEN P, CIOBICA I M, COETZER I M, COETZER R L J. The size-dependent site composition of FCC cobalt nanocrystals[J]. Catal Today,2016,261:48−59.  doi: 10.1016/j.cattod.2015.07.052

    34. [34]

      RANKIN R B. Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(1016) surfaces of Co, Os, and Ru from DFT calculations[J]. Heliyon,2019,5(6):e01924−e01924.  doi: 10.1016/j.heliyon.2019.e01924

    35. [35]

      PRIETO G, MARTINEZ A, CONCEPCION P, MORENO-TOST R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. J Catal,2009,266(1):129−144.  doi: 10.1016/j.jcat.2009.06.001

    36. [36]

      GNANAMANI M L, RIBEIRO M C, MA W, SHAFER W D, JACOBS G, GRAHAM U M, DAVIS B H. Fischer-Tropsch synthesis: Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts[J]. Appl Catal A: Gen,2011,393(1/2):17−23.  doi: 10.1016/j.apcata.2010.11.019

    37. [37]

      PEI Y P, LIU J X, ZHAO Y H, DING Y J, LIU T, DONG W D, ZHU H J, SU H Y, YAN Li, LI Jin-lin, LI Wei-xue. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide Interface[J]. ACS Catal,2015,5(6):3620−3624.  doi: 10.1021/acscatal.5b00791

    38. [38]

      YANG Xia-zhen, LIU Hua-zhang, TANG Hao-dong, CAI Li-ping, WU Zai-guo. Research progress of promoters for Fe, Co-based Fischer-Tropch synthesis catalysts[J]. Chem Ind Eng Prog, 2006,2006,25(8):867−870.

    39. [39]

      HADDAD G L, CHEN B, GOODWIN J J G. Effect of La3+ Promotion of Co/SiO2 on CO hydrogenation[J]. J Catal,1996,161(1):274−281.  doi: 10.1006/jcat.1996.0185

    40. [40]

      JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903.  doi: 10.1021/acscatal.5b01578

    41. [41]

      JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2015,6(1):100−114.

    42. [42]

      PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J S, LIU W, CUONG P H, LIU Y F, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906.  doi: 10.1021/acscatal.0c01874

    43. [43]

      LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Segregation of Fischer-Tropsch reactants on cobalt nanoparticle surfaces[J]. Chem Commun,2014,50(49):6537−6539.  doi: 10.1039/C4CC01680G

    44. [44]

      LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Visualization of compression and spillover in a coadsorbed system: Syngas on cobalt nanoparticles[J]. ACS Nano,2013,7(5):4384−4392.  doi: 10.1021/nn400919y

    45. [45]

      LIN T J, GONG K, WANG C Q, AN Y L, WANG X X, QI X Z, LI S G, LU Y W, ZHONG L S, SUN Y H. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catal,2019,9(10):9554−9567.  doi: 10.1021/acscatal.9b02513

    46. [46]

      GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. CO adsorption on cobalt: Prediction of stable surface phases[J]. Surf Sci,2015,642:L6−L10.  doi: 10.1016/j.susc.2015.06.024

    47. [47]

      PAREDES-NUNEZ A, LORITO D, GUILHAUME N, MIRODATOS C, SCHUURMAN Y, MEUNIER F C. Nature and reactivity of the surface species observed over a supported cobalt catalyst under CO/H2 mixtures[J]. Catal Today,2015,242:178−183.  doi: 10.1016/j.cattod.2014.04.033

    48. [48]

      ZHANG R G, LIU F, WNAG Q, WANG B J, LI D B. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84.  doi: 10.1016/j.apcata.2016.07.007

    49. [49]

      ZHANG R G, KANG L, LIU H X, WANG B J, LI D B, FAN M H. Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2020,269:118847.  doi: 10.1016/j.apcatb.2020.118847

    50. [50]

      FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts - effect of adsorbed hydrogen[J]. Surf Sci,2021,705.

    51. [51]

      SINGH J A, YANG N, LIU X Y, TSAI C, STONE K H, JOHNSON B, KOH A L, BENT S F. Understanding the active sites of CO hydrogenation on Pt-Co catalysts prepared using atomic layer deposition[J]. J Phys Chem C,2018,122(4):2184−2194.  doi: 10.1021/acs.jpcc.7b10541

    52. [52]

      WANG H, ZHOU W, LIU J X, SI R, SUN G, ZHONG M Q, SU H Y, ZHAO H B, RODRIGUEZ J A, PENNYCOOK S J, IDROBO J C, LI W X, KOU Y, MA D. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J]. J Am Chem Soc,2013,135(10):4149−4158.  doi: 10.1021/ja400771a

    53. [53]

      WESTAATE C J, VAN DE LOOSDRECHT J, NIEMANTSVERDRIET J W. Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt[J]. J Catal,2016,342:1−16.  doi: 10.1016/j.jcat.2016.07.010

    54. [54]

      MCNAB A I, MCCUE A J, DIONISI D, ANDERSON A. Quantification and qualification by in-situ FTIR of species formed on supported-cobalt catalysts during the Fischer-Tropsch reaction[J]. J Catal,2017,353:286−294.  doi: 10.1016/j.jcat.2017.07.031

    55. [55]

      TESCHNER D, BORSODI J, WOOTSCH A, REVAY Z, HAEVECKER M, KNOP-GERICKE A, JACKSON S D, SCHLOEGL R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Sci,2008,320(5872):86−89.  doi: 10.1126/science.1155200

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(893)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return