Research progress of microstructure for cobalt-based F-T catalysts
- Corresponding author: Jun-gang WANG, wangjg@sxicc.ac.cn Bo HOU, houbo@sxicc.ac.cn
Citation:
Wen-li LU, Jun-gang WANG, De-kui SUN, Zhong-yi MA, Cong-biao CHEN, Bo HOU, De-bao LI. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(4): 436-445.
doi:
10.19906/j.cnki.JFCT.2021091
DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203.
doi: 10.1021/ja901006x
SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S I, YAKUBA E S, MIYCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91.
doi: 10.1134/S0023158417010062
LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287.
doi: 10.1021/ja408521w
IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Cata A: Gen,1997,161(1):59−78.
BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VANDILLEN A J, DEJONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964.
doi: 10.1021/ja058282w
XIONG H, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. J Catal,2011,278(1):26−40.
doi: 10.1016/j.jcat.2010.11.010
(QIU Cheng-wu, WU Bao-shan, MENG Shao-cong, LI Yong-wang. Effects of Co/SiO2 particle size on Fischer-Tropsch synthesis: Study by TPD and DRIFTS[J]. Acta Chim Sin,2015,73(7):690−698.
doi: 10.6023/A15020133
QI Z, CHEN L, ZHANG S, SU J, SOMORJAI G A. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2020,602:117701.
doi: 10.1016/j.apcata.2020.117701
RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by Time-Resolved Chemical Transient Kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419.
doi: 10.1002/anie.201701186
TUXEN A, CARENCO S, CHINTAPALLI M, ESCUDERO C, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONIDCS F, BEBERWYCK B, ALIVISATOS A P, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278.
doi: 10.1021/ja3105889
MITCHELL R W, LLOYD D C, VAN DE WATER L G A, ELLIS P R, METCALFE K A, SIBBALD C, DAVIES L H, ENACHE D I, KELLY G J, BOYES E D, GAI P L. Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2018,8(9):8816−8829.
doi: 10.1021/acscatal.8b02320
MARGOLIN H. Constitution of binary alloys[J]. J Am Chem Soc,1959,81(10):2600−2600.
KITAKAMI O, SATO H, SHIMADA Y, SATO F, TANAKA M. Size effect on the crystal phase of cobalt fine particles[J]. Phys Rev B,1997,56(21):13849−13854.
doi: 10.1103/PhysRevB.56.13849
TSAKOUMIS N E, PATANOU E, LOGDBERG S, JOHNSEN R E, MYRATAD R, VAN BEEK W, RYTTER E, BLEKKAN E A. Structure-performance relationships on Co-based Fischer-Tropsch synthesis catalysts: The more defect-free, the better[J]. ACS Catal,2019,9(1):511−520.
doi: 10.1021/acscatal.8b03549
GARCES L J, HINCAPIE B, ZERGER R, SUIB S L. The effect of temperature and support on the reduction of cobalt oxide: An in situ X-ray diffraction study[J]. J Phys Chem C,2015,119(10):5484−5490.
doi: 10.1021/jp5124184
VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038.
doi: 10.1039/c3cp52506f
LYU S, WANG L, ZHANG J H, LIU C, SUN J M, PENG B, WANG Y, RAPPE KENNETH G, ZHANG Y H, LI J L, NIE L. Role of active phase in Fischer-Tropsch synthesis: Experimental evidence of CO activation over single-phase cobalt catalysts[J]. ACS Catal,2018,8(9):7787−7798.
doi: 10.1021/acscatal.8b00834
ZIJLSTRA B, BROOS R J P, CHEN W, OOSTERBEEK H, FILOT I A W, HENSEN E J M. Coverage effects in CO dissociation on metallic cobalt nanoparticles[J]. ACS Catal,2019,9(8):7365−7372.
doi: 10.1021/acscatal.9b01967
PETERSEN M A, VAN DEN BERG J A, VAN HELDEN P. Revisiting CO activation on Co catalysts: Impact of step and kink sites from DFT[J]. ACS Catal,2017,7(3):1984−1992.
doi: 10.1021/acscatal.6b02843
ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear alpha-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7(20):4736−4755.
doi: 10.1039/C7CY01764B
ZHAO Y H, SUN K J, MA X F, LIU J X, SUN D P, SU H Y, LI W X. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion[J]. Angew Chem Int Ed,2011,50(23):5335−5338.
doi: 10.1002/anie.201100735
SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977.
doi: 10.1039/C7CY00706J
ZHANG R G, KANG L, LIU H X, HE L L, WANG B J. Insight into the C-C chain growth in Fischer-Tropsch synthesis on HCP Co(10-10) surface: The effect of crystal facets on the preferred mechanism[J]. Comp Mater Sci,2018,145:263−279.
doi: 10.1016/j.commatsci.2018.01.013
QIN C, HOU B, WANG J G, WANG Q, WANG G, YU M T, CHEN C B, JIA L T, LI D B. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455.
doi: 10.1021/acscatal.8b01333
VAN SANTEN R A. Complementary structure sensitive and insensitive catalytic relationships[J]. Accounts Chem Res,2009,42(1):57−66.
doi: 10.1021/ar800022m
AGRAWAL R, PHATAK P, SPANU L. Effect of phase and size on surface sites in cobalt nanoparticles[J]. Catal Today,2018,312:174−180.
doi: 10.1016/j.cattod.2018.03.064
BOELLER B, DURNER K M, WINTTERLIN J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy[J]. Nat Catal,2019,2(11):1027−1034.
doi: 10.1038/s41929-019-0360-1
PESTAMAN R, CHEN W, HENSEN E. Insight into the rate-determining step and active sites in the Fischer-Tropsch reaction over cobalt catalysts[J]. ACS Catal,2019,9(5):4189−4195.
doi: 10.1021/acscatal.9b00185
STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Model Simul Mater Sc, 2012, 20(4).
BANERJEE A, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. Origin of the formation of nanoislands on cobalt catalysts during Fischer-Tropsch synthesis[J]. ACS Catal,2015,5(8):4756−4760.
doi: 10.1021/acscatal.5b01169
WANG B J, LIANG D L, GUAN Z, LI D B, ZHANG D B, ZHANG R G. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem C,2020,124(10):5749−5758.
doi: 10.1021/acs.jpcc.0c00611
LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis[J]. ACS Catal,2019,9(8):7073−7089.
doi: 10.1021/acscatal.9b00352
VAN HELDEN P, CIOBICA I M, COETZER I M, COETZER R L J. The size-dependent site composition of FCC cobalt nanocrystals[J]. Catal Today,2016,261:48−59.
doi: 10.1016/j.cattod.2015.07.052
RANKIN R B. Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(1016) surfaces of Co, Os, and Ru from DFT calculations[J]. Heliyon,2019,5(6):e01924−e01924.
doi: 10.1016/j.heliyon.2019.e01924
PRIETO G, MARTINEZ A, CONCEPCION P, MORENO-TOST R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. J Catal,2009,266(1):129−144.
doi: 10.1016/j.jcat.2009.06.001
GNANAMANI M L, RIBEIRO M C, MA W, SHAFER W D, JACOBS G, GRAHAM U M, DAVIS B H. Fischer-Tropsch synthesis: Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts[J]. Appl Catal A: Gen,2011,393(1/2):17−23.
doi: 10.1016/j.apcata.2010.11.019
PEI Y P, LIU J X, ZHAO Y H, DING Y J, LIU T, DONG W D, ZHU H J, SU H Y, YAN Li, LI Jin-lin, LI Wei-xue. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide Interface[J]. ACS Catal,2015,5(6):3620−3624.
doi: 10.1021/acscatal.5b00791
YANG Xia-zhen, LIU Hua-zhang, TANG Hao-dong, CAI Li-ping, WU Zai-guo. Research progress of promoters for Fe, Co-based Fischer-Tropch synthesis catalysts[J]. Chem Ind Eng Prog, 2006,2006,25(8):867−870.
HADDAD G L, CHEN B, GOODWIN J J G. Effect of La3+ Promotion of Co/SiO2 on CO hydrogenation[J]. J Catal,1996,161(1):274−281.
doi: 10.1006/jcat.1996.0185
JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903.
doi: 10.1021/acscatal.5b01578
JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2015,6(1):100−114.
PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J S, LIU W, CUONG P H, LIU Y F, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906.
doi: 10.1021/acscatal.0c01874
LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Segregation of Fischer-Tropsch reactants on cobalt nanoparticle surfaces[J]. Chem Commun,2014,50(49):6537−6539.
doi: 10.1039/C4CC01680G
LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Visualization of compression and spillover in a coadsorbed system: Syngas on cobalt nanoparticles[J]. ACS Nano,2013,7(5):4384−4392.
doi: 10.1021/nn400919y
LIN T J, GONG K, WANG C Q, AN Y L, WANG X X, QI X Z, LI S G, LU Y W, ZHONG L S, SUN Y H. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catal,2019,9(10):9554−9567.
doi: 10.1021/acscatal.9b02513
GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. CO adsorption on cobalt: Prediction of stable surface phases[J]. Surf Sci,2015,642:L6−L10.
doi: 10.1016/j.susc.2015.06.024
PAREDES-NUNEZ A, LORITO D, GUILHAUME N, MIRODATOS C, SCHUURMAN Y, MEUNIER F C. Nature and reactivity of the surface species observed over a supported cobalt catalyst under CO/H2 mixtures[J]. Catal Today,2015,242:178−183.
doi: 10.1016/j.cattod.2014.04.033
ZHANG R G, LIU F, WNAG Q, WANG B J, LI D B. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84.
doi: 10.1016/j.apcata.2016.07.007
ZHANG R G, KANG L, LIU H X, WANG B J, LI D B, FAN M H. Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2020,269:118847.
doi: 10.1016/j.apcatb.2020.118847
FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts - effect of adsorbed hydrogen[J]. Surf Sci,2021,705.
SINGH J A, YANG N, LIU X Y, TSAI C, STONE K H, JOHNSON B, KOH A L, BENT S F. Understanding the active sites of CO hydrogenation on Pt-Co catalysts prepared using atomic layer deposition[J]. J Phys Chem C,2018,122(4):2184−2194.
doi: 10.1021/acs.jpcc.7b10541
WANG H, ZHOU W, LIU J X, SI R, SUN G, ZHONG M Q, SU H Y, ZHAO H B, RODRIGUEZ J A, PENNYCOOK S J, IDROBO J C, LI W X, KOU Y, MA D. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J]. J Am Chem Soc,2013,135(10):4149−4158.
doi: 10.1021/ja400771a
WESTAATE C J, VAN DE LOOSDRECHT J, NIEMANTSVERDRIET J W. Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt[J]. J Catal,2016,342:1−16.
doi: 10.1016/j.jcat.2016.07.010
MCNAB A I, MCCUE A J, DIONISI D, ANDERSON A. Quantification and qualification by in-situ FTIR of species formed on supported-cobalt catalysts during the Fischer-Tropsch reaction[J]. J Catal,2017,353:286−294.
doi: 10.1016/j.jcat.2017.07.031
TESCHNER D, BORSODI J, WOOTSCH A, REVAY Z, HAEVECKER M, KNOP-GERICKE A, JACKSON S D, SCHLOEGL R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Sci,2008,320(5872):86−89.
doi: 10.1126/science.1155200
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Conditions: H2/CO/N2 = 6∶3∶1 (mol ratio), GHSV = 2.0 L/(gcat·h), p = 1 MPa[17]with permission from ACS Publications