Citation: Su-min LIU, Hai-ping YANG, Jun-hao HU, Jun ZOU, Han-ping CHEN, Chen-guang WANG. Study on gasification kinetics and product characteristics of typical lignin[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087 shu

Study on gasification kinetics and product characteristics of typical lignin

  • Corresponding author: Hai-ping YANG, yhping2002@163.com
  • Received Date: 31 August 2021
    Revised Date: 9 October 2021

Figures(7)

  • Four typical lignins: alkali lignin, lignosulfonate, hydrolyzed lignin and G-type lignin, were selected to study their gasification weight loss characteristics, kinetic mechanism and product characteristics on a thermogravimetric analyzer (TGA) and fixed bed experiments, in order to reveal the influence of lignin sources on their gasification characteristics. The results showed that the homogeneous model fit the gasification reaction process well. Alkali lignin had the highest pyrolytic activity, reacted at lower temperature, and had the lowest activation energy. However, the structure of pyrolytic coke was dense and the gasification reactivity was poor. G-lignin had similar gasification characteristics with alkali lignin. Lignosulfonate and hydrolyzed lignin had two pyrolysis stages, and their coke gasification reactivities were high. For products characteristics, H2 and CO were the main gas products. Alkali lignin had the H2 yield as high as 55 mmol/g, the highest carbon conversion rate (87%), and the minimum residual coke. However, hydrolyzed lignin and G-lignin had lower gas production, but tar and solid residue were relatively more, which was mainly related to the inorganic mineral content and composition.
  • 加载中
    1. [1]

      KLEMM D, HEUBLEIN B, FINK H, BOHN A. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angew Chem Int Ed,2005,44(22):3358−3393.  doi: 10.1002/anie.200460587

    2. [2]

      LI Zhong-zheng. Research on renewable biomass resource—lignin[J]. J Nanjing Univ,2012,36(1):1−7.

    3. [3]

      SOOMRO A, CHEN S, MA S, XU C, SUN Z, XIANG W. Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses[J]. Biomass Bioenergy,2018,115:210−222.  doi: 10.1016/j.biombioe.2018.05.002

    4. [4]

      WU C, WANG Z, HUANG J, WILLIAMS P T. Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts[J]. Fuel,2013,106:697−706.  doi: 10.1016/j.fuel.2012.10.064

    5. [5]

      GUO Da-liang. Research on pyrolysis and gasification characteristics of wheat strawsoda pulping black liquor and formation rules of products[D]. Guangzhou: South China University of Technology, 2012.

    6. [6]

      CHEN Lei. Study on pyrolysis mechanism of lignin and its model compounds[D]. Wuhan: Huazhong University of Science and Technology, 2015.

    7. [7]

      CHUNFEI W, ZICHUN W, VALERIE D, JUN H, PAUL T W. Nickel-catalysed pyrolysis/gasification of biomass components[J]. J Anal Appl Pyrol,2013,99.

    8. [8]

      YANG H, DONG Z, LIU B, CHEN Y, GONG M, LI S, CHEN H. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char[J]. Fuel,2021,288:119719.

    9. [9]

      ZHANG Bin, WU Shu-bin, YIN Xiu-li, WU Chuang-zhi, QIU Ze-jing, MA Long-long. Analysis of structure and pyrolysis products of acid hydrolyzed lignin[J]. Acta Energ Sol Sin,2011,32(1):19−24.

    10. [10]

      LI Ji-biao, WU Shu-bin, XU Shao-hua. Chemical structure and thermochemical property of lignin sulfonate[J]. Chem Ind Prod,2014,34(02):23−28.

    11. [11]

      CHEN Jian-xing, LIU Liang, TIAN Hong, ZHANG Hang, CHEN Bin-bin. Theoretical study on mechanism of high-temperature steam-assisted gasification of β-O-4 lignin dimer[J]. Mater Rep,2015,29(14):156−161.

    12. [12]

      ZHU Li. Basic research on catalytic gasification of lignin with copper slag[D]. Kunming: Kunming University of Science and Technology, 2015.

    13. [13]

      GUO D, WU S, LIU B, YIN X, YANG Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Appl Energ,2012,95:22−30.  doi: 10.1016/j.apenergy.2012.01.042

    14. [14]

      CHEW J J, SOH M, SUNARSO J, YONG S, DOSHI V, BHATTACHARYA S. Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass[J]. Biomass Bioenergy,2020,134:105487.  doi: 10.1016/j.biombioe.2020.105487

    15. [15]

      EDREIS E M A, LUO G, LI A, XU C, YAO H. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification[J]. Energ Convers Manage,2014,79:355−366.  doi: 10.1016/j.enconman.2013.12.043

    16. [16]

      JIANG Long. Migration and catalytic characteristic of intrinsic AAEMs during pyrolysis and gasification process of biomass [D]. Wuhan: Huazhong University of Science and Technology, 2013.

    17. [17]

      GUO Da-liang, WANG Lin-fang, GUO Hui-ping, CHEN Meng-wei, XUE Guo-xin, WU Shu-bin. Influence of inorganic and organic bound Na on char gasification characteristics of lignin[J]. Trans Chin Soc Agric Mach,2017,48(03):332−337.

    18. [18]

      HU Jun-hao. Study on the co-pyrolysis/gasification characteristics of coal and biomass and the interactions [D]. Wuhan: Huazhong University of Science and Technology, 2018.

    19. [19]

      LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707.  doi: 10.1016/j.fuel.2006.03.008

    20. [20]

      LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process[J]. Bioresource Technol,2013,138:124−130.  doi: 10.1016/j.biortech.2013.03.179

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(0)
  • Abstract views(812)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return