Citation: Juan YANG, Peng-yu CHEN, Jun DAI, Li-qing RONG, Da-zhao WANG. Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 464-473. doi: 10.19906/j.cnki.JFCT.2021086 shu

Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol

  • Corresponding author: Jun DAI, daijun@hpu.edu.cn
  • Received Date: 18 August 2021
    Revised Date: 27 September 2021

Figures(12)

  • Direct and selective conversion of methane to methanol under mild conditions still faces grand challenges. In this study, Co3O4/WO3 nanocomposite catalysts were synthesized by facile hydrothermal method, combining with surface impregnation process. The structural composition and micro morphology of Co3O4/WO3 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-visible absorption spectrum. The catalytic performance of Co3O4/WO3 on the conversion of methane to methanol was investigated under visible light illumination at room temperature. The results show that incorporating Co3O4 can remarkably improve the photocatalytic performance of methane conversion. The optimal catalyst 3.0% Co3O4/WO3 exhibits a methane conversion of 2041 μmol/g after visible light irradiation for 2 h, and the according methanol productivity and selectivity reach 1194 μmol/g and 58.5%, which are 4.03 and 2.39 times of single WO3 respectively. This performance is superior to most reported heterogeneous photocatalysts for methane conversion, meanwhile possessing excellent cyclic stability. Combining the results of transient photocurrent and electron paramagnetic resonance (EPR) with the catalytic activity, the intrinsic mechanism of enhanced methane conversion via introducing Co3O4 is revealed, which is of theoretical significance to design light-driven catalysts for methane conversion to methanol.
  • 加载中
    1. [1]

      MCFARLAND E. Unconventional chemistry for unconventional natural gas[J]. Science,2012,338(6105):340−342.  doi: 10.1126/science.1226840

    2. [2]

      SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520.  doi: 10.1021/acs.chemrev.6b00715

    3. [3]

      ZHAN C G, NICHOLS J A, DIXON D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies[J]. J Phys Chem A,2003,107(20):4184−4195.  doi: 10.1021/jp0225774

    4. [4]

      DA SILVA M J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM)[J]. Fuel Process Technol,2016,145:42−61.  doi: 10.1016/j.fuproc.2016.01.023

    5. [5]

      KWON Y, KIM T Y, KWON G, YI J, LEE H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. J Am Chem Soc,2017,139(48):17694−17699.  doi: 10.1021/jacs.7b11010

    6. [6]

      AGARWAL N, FREAKLEY S J, MCVICKER R U, ALTHAHBAN S M, DIMITRATOS N, HE Q, MORGAN D J, JENKINS R L, WILLOCK D J, TAYLOR S H, KIELY C J, HUTCHINGS G J. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−227.  doi: 10.1126/science.aan6515

    7. [7]

      YU Gui-yang. The study of spatial field effect on improving semiconductor photocatalytic hydrogen evolution[D]. Changchun: Jilin University, 2019.

    8. [8]

      YANG J, HAO J Y, XU S Y, WANG Q, DAI J, ZHANG A C, PANG X C. InVO4/β-AgVO3 nanocomposite as a direct Z-Scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction[J]. ACS Appl Mater Inter,2019,11(35):32025−32037.  doi: 10.1021/acsami.9b10758

    9. [9]

      LI H, SHANG J, AI Z H, ZHANG L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J Am Chem Soc,2015,137(19):6393−6399.  doi: 10.1021/jacs.5b03105

    10. [10]

      XU Zhen-min, BIAN Zhen-feng. Photocatalytic methane conversion[J]. Acta Phys-Chim Sin,2020,36(3):1907013.  doi: 10.3866/PKU.WHXB201907013

    11. [11]

      ZHU W L, SHEN M K, FAN G Z, YANG A, MEYER J R, OU Y N, YIN B, FORTNER J, FOSTON M, LI Z S, ZOU Z G, SADTLER B. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol[J]. ACS Appl Nano Mater,2018,1(12):6683−6691.  doi: 10.1021/acsanm.8b01490

    12. [12]

      LIU H S, SONG C J, ZHANG L, ZHANG J J, WANG H J, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources,2006,155(2):95−110.  doi: 10.1016/j.jpowsour.2006.01.030

    13. [13]

      SONG H, MENG X G, WANG S Y, ZHOU W, WANG X S, KAKO T, YE J H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. J Am Chem Soc,2019,141(51):20507−20515.  doi: 10.1021/jacs.9b11440

    14. [14]

      LUO L H, LUO J, LI H L, REN F N, ZHANG Y F, LIU A D, LI W-X, ZENG J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts[J]. Nat Commun,2021,12:1218.  doi: 10.1038/s41467-021-21482-z

    15. [15]

      YU L H, SHAO Y, LI D Z. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2[J]. Appl Catal B: Environ,2017,204:216−223.  doi: 10.1016/j.apcatb.2016.11.039

    16. [16]

      ZHAN Ying-ying, KANG Liang, ZHOU Yu-chang, CAI Guo-hui, CHEN Chong-qi, JIANG Li-long. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation[J]. J Fuel Chem Technol,2019,47(10):1235−1244.  doi: 10.3969/j.issn.0253-2409.2019.10.010

    17. [17]

      YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. J Fuel Chem Technol,2018,46(11):1359−1369.  doi: 10.3969/j.issn.0253-2409.2018.11.010

    18. [18]

      VILLA K, MURCIA-LÓPEZ S, MORANTE J R, ANDREU T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Appl Catal B: Environ,2016,187:30−36.  doi: 10.1016/j.apcatb.2016.01.032

    19. [19]

      VILLA K, MURCIA-LÓPEZ S, ANDREU T, MORANTE J R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers[J]. Appl Catal B: Environ,2015,163:150−155.  doi: 10.1016/j.apcatb.2014.07.055

    20. [20]

      WANG Bing, ZHAO Mei-ming, ZHOU Yong, YAN Shi-cheng, ZOU Zhi-gang. Recent progress and challenge in research of photocatalytic reduction of CO2 to solar fuels[J]. Sci Sin Tech,2017,47(3):286−296.  doi: 10.1360/N092016-00434

    21. [21]

      SUN Shang-cong, ZHANG Xu-ya, LIU Xian-long, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Design and construction of cocatalysts for photocatalytic water splitting[J]. Acta Phys-Chim Sin,2020,36(3):1905007.  doi: 10.3866/PKU.WHXB201905007

    22. [22]

      CHEN Peng, ZHOU Ying, DONG Fan. Advances in regulation strategies for electronic structure and performance of two-dimensional photocatalytic materials[J]. Acta Phys-Chim Sin,2021,37(8):2010010.

    23. [23]

      WANG Z D, CHU Z, DONG C W, WANG Z, YAO S Y, GAO H, LIU Z Y, LIU Y, YANG B, ZHANG H. Ultrathin BiOX (X=Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis[J]. ACS Appl Nano Mater,2020,3(2):1981−1991.  doi: 10.1021/acsanm.0c00022

    24. [24]

      ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. J Fuel Chem Technol,2019,47(2):249−256.  doi: 10.3969/j.issn.0253-2409.2019.02.015

    25. [25]

      LIU J, KE J, LI Y, LIU B J, WANG L D, XIAO H N, WANG S B. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting[J]. Appl Catal B: Environ,2018,236:396−403.  doi: 10.1016/j.apcatb.2018.05.042

    26. [26]

      YANG J, WEN Z H, SHEN X X, DAI J, LI Y, LI Y J. A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer[J]. Chem Eng J,2018,334:907−921.  doi: 10.1016/j.cej.2017.10.088

    27. [27]

      XIE J J, JIN R X, LI A, BI Y P, RUAN Q S, DENG Y C, ZHANG Y J, YAO S Y, SANKAR G, MA D, TANG J W. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nat Catal,2018,1(11):889−896.  doi: 10.1038/s41929-018-0170-x

    28. [28]

      MA M, ZHANG K, LI P, JUNG M S, JEONG M J, PARK J H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation[J]. Angew Chem Int Ed,2016,55(39):11819−11823.  doi: 10.1002/anie.201605247

    29. [29]

      LIU D N, CHEN D Y, LI N J, XU Q F, LI H, HE J H, LU J M. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide[J]. Small,2019,15(31):1902291.  doi: 10.1002/smll.201902291

    30. [30]

      ZHANG H Y, GUO C F, REN J B, NING J Q, ZHONG Y J, ZHANG Z Y, HU Y. Beyond CoOx: A versatile amorphous cobalt species as an efficient cocatalyst for visible-light-driven photocatalytic water oxidation[J]. Chem Commun,2019,55(93):14050−14053.  doi: 10.1039/C9CC07835E

    31. [31]

      PARK J, YOON H, CHOI S, SON J. Nanoscaffold WO3 by kinetically controlled polymorphism[J]. Cryst Growth Des,2019,19(1):479−486.  doi: 10.1021/acs.cgd.8b01551

    32. [32]

      LIU H, ZHANG J, AO D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production[J]. Appl Catal B: Environ,2018,221:433−442.  doi: 10.1016/j.apcatb.2017.09.043

    33. [33]

      YUAN J L, WEN J Q, GAO Q Z, CHEN S C, LI J M, LI X, FANG Y P. Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity[J]. Dalton Trans,2015,44(4):1680−1689.  doi: 10.1039/C4DT03197K

    34. [34]

      MURCIA-LÓPEZ S, VILLA K, ANDREU T, MORANTE J R. Partial oxidation of methane to methanol using bismuth-based photocatalysts[J]. ACS Catal,2014,4:3013−3019.  doi: 10.1021/cs500821r

    35. [35]

      ZENG Y, LUO X, LI F, HUANG A H, WU H M, XU G Q, WANG S L. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with Visible-NIR light[J]. Environ Sci Technol,2021,55(11):7711−7720.  doi: 10.1021/acs.est.1c01152

    36. [36]

      MURCIA-LÓPEZ S, BACARIZA M C, VILLA K, LOPES J M, HENRIQUES C, MORANTE J R, ANDREU T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites[J]. ACS Catal,2017,7:2878−2885.  doi: 10.1021/acscatal.6b03535

    37. [37]

      LI Y, LI J, ZHANG G K, WANG K, WU X Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium[J]. ACS Sustainable Chem Eng,2019,7(4):4382−4389.  doi: 10.1021/acssuschemeng.8b06270

    38. [38]

      CHEN Z Q, CHEN P F, XING P X, HU X, LIN H J, ZHAO L H, WU Y, HE Y M. Rapid fabrication of KTa0.75Nb0.25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution[J]. Fuel,2019,241:1−11.  doi: 10.1016/j.fuel.2018.12.011

    39. [39]

      CHENG Rong-min, XU Hong, SHAN Rui-ping, ZHAN Cong-hong. Influential factors of La-doped Calcium Titanate for photocatalytic H2 evolution under visible light[J]. Chem J Chin Univ,2020,41(6):1345−1351.  doi: 10.7503/cjcu20190644

    40. [40]

      ZHAO Z W, FAN J Y, DENG X Y, LIU J. One-step synthesis of phosphorus-doped g-C3N4/Co3O4 quantum dots from vitamin B12 with enhanced visible-light photocatalytic activity for metronidazole degradation[J]. Chem Eng J,2019,360:1517−1529.  doi: 10.1016/j.cej.2018.10.239

    41. [41]

      TANG C N, LIU E Z, WAN J, HU X Y, FAN J. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Appl Catal B: Environ,2016,181:707−715.  doi: 10.1016/j.apcatb.2015.08.045

    42. [42]

      HE W W, KIM H K, WARNER W G, MELKA D, CALLAHAN J H, YIN J J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity[J]. J Am Chem Soc,2014,136:750−757.  doi: 10.1021/ja410800y

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(475)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return