Research progress on mordenite catalyzed carbonylation of dimethyl ether
- Corresponding author: Guo-hui YANG, yanggh@sxicc.ac.cn
Citation:
Sheng-ying ZHAO, Hai-lun GENG, Bing XU, Xue-mei WU, Ming-hui TAN, Guo-hui YANG, Yi-sheng TAN. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(2): 166-179.
doi:
10.19906/j.cnki.JFCT.2021083
SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iridium - The Cativa (TM) process for the manufacture of acetic acid[J]. Catal Today,2000,58(4):293−307.
doi: 10.1016/S0920-5861(00)00263-7
WANG Yu-he, HE De-hua, XU Bo-qing. Studies of producing acetic acid by carbonylation of methanol[J]. Prog Chem,2003,(3):215−221.
doi: 10.3321/j.issn:1005-281X.2003.03.007
WEGMAN R W. Vapor-phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts[J]. J Chem Soc Chem Comm,1994,(8):947−948.
doi: 10.1039/c39940000947
CHEUNG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed Eng,2006,45(10):1617−1620.
doi: 10.1002/anie.200503898
SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fues,2009,23(5/6):2843−2844.
LI X, SAN X, ZHANG Y, ICHII T, MENG M, TAN Y, TSUBAKI N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem,2010,3(10):1192−1199.
doi: 10.1002/cssc.201000109
BHAN A, ALLIAN A D, SUNLEY G J, LAW D J, IGLESIA E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc,2007,129(16):4919−4924.
doi: 10.1021/ja070094d
FENG X, YAO J, LI H, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. A brand new zeolite catalyst for carbonylation reaction[J]. Chem Commun,2019,55(8):1048−1051.
doi: 10.1039/C8CC08411D
LUSARDI M, CHEN T T, KALE M, KANG J H, NEUROCK M, DAVIS M E. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catal,2019,10(1):842−851.
JUNG H S, XUAN N T, BAE J W. Carbonylation of dimethyl ether on ferrierite zeolite: Effects of crystallinity to coke distribution and deactivation[J]. Microporous Mesoporous Mater,2021,310:110669.
HAM H, JUNG H S, KIM H S, KIM J, CHO S J, LEE W B, PARK M J, BAE J W. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite[J]. ACS Catal,2020,10(9):5135−5146.
doi: 10.1021/acscatal.9b05144
SANO T, WAKABAYASHI S, OUMI Y, UOZUMI T. Synthesis of large mordenite crystals in the presence of aliphatic alcohol[J]. Microporous Mesoporous Mater,2001,46(1):67−74.
doi: 10.1016/S1387-1811(01)00285-2
SIMONCIC P, ARMBRUSTER T. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal X-ray study[J]. Am Mineral,2004,89(2/3):421−431.
doi: 10.2138/am-2004-2-323
MEIER W Μ. The crystal structure of mordenite (ptilolite)[J]. Z Krist-Cryst Mater,1961,115(1/6):439−450.
doi: 10.1524/zkri.1961.115.16.439
FERNANDES L D, MONTEIRO J L F, SOUSA-AGUIAR E F, MARTINEZ A, CORMA A. Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure[J]. J Catal,1998,177(2):363−377.
doi: 10.1006/jcat.1998.2111
TSAI T C, CHEN W H, LAI C S, LIU S B, WANG I, KU C S. Kinetics of toluene disproportionation over fresh and coked H-mordenite[J]. Catal Today,2004,97(4):297−302.
doi: 10.1016/j.cattod.2004.07.013
LU K, HUANG J, REN L, LI C, GUAN Y, HU B, XU H, JIANG J, MA Y, WU P. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angew Chem Int Ed Eng,2020,59(15):6258−6262.
doi: 10.1002/anie.202000269
ISSA H, TOUFAILY J, HAMIEH T, COMPAROT J D, SACHSE A, PINARD L. Mordenite etching in pyridine: Textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking[J]. J Catal,2019,374:409−421.
doi: 10.1016/j.jcat.2019.05.004
BLAY V, LOUIS B, MIRAVALLES R, YOKOI T, PECCATIELLO K A, CLOUGH M, YILMAZ B. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catal,2017,7(10):6542−6566.
doi: 10.1021/acscatal.7b02011
WULFERS M J, JENTOFT F C. Identification of carbonaceous deposits formed on H-mordenite during alkane isomerization[J]. J Catal,2013,307:204−213.
doi: 10.1016/j.jcat.2013.07.011
SEGAWA K, SHIMURA T. Effect of dealumination of mordenite by acid-leaching for selective synthesis of ethylenediamine from ethanolamine[J]. Appl Catal A: Gen,2000,194:309−317.
MA Meng. Shape control of mordenite and its catalytic performance for dimethyl carbonyl carbonylation[D]. Beijing: University of Chinese Academy of Sciences, 2018.
FUJIMOTO K, SHIKADA T, OMATA K, TOMINAGA H. Vapor-phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett,1984,(12):2047−2050.
CHEUNG P, BHAN A, SUNLEY G J, LAW D J, IGLESIA E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal,2007,245(1):110−123.
doi: 10.1016/j.jcat.2006.09.020
LIU Z Q, YI X F, WANG G R, TANG X M, LI G C, HUANG L, ZHENG A M. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion[J]. J Catal,2019,369:335−344.
doi: 10.1016/j.jcat.2018.11.024
LIU S P, LIU H C, MA X G, LIU Y, ZHU W L, LIU Z M. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catal Sci Technol,2020,10(14):4663−4672.
doi: 10.1039/D0CY00125B
LIU J L, XUE H F, HUANG X M, WU P H, HUANG S J, LIU S B, SHEN W J. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chin J Catal,2010,31(7):729−738.
doi: 10.1016/S1872-2067(09)60081-4
XUE H F, HUANG X M, ZHAN E S, MA M, SHEN W J. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catal Commun,2013,37:75−79.
doi: 10.1016/j.catcom.2013.03.033
ZHAN H M, HUANG S Y, LI Y, LV J, WANG S P, MA X B. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catal Sci Technol,2015,5(9):4378−4389.
doi: 10.1039/C5CY00460H
LU P, CHEN Q J, YANG G H, TAN L, FENG X B, YAO J, YONEYAMA Y, TSUBAKI N. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal,2020,10(2):1366−1374.
doi: 10.1021/acscatal.9b02891
ZHOU Hui. Studies on carbonylation of dimethyl ether catalyzed by zeolites[D]. Beijing: University of Chinese Academy of Sciences, 2016.
BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys,2011,13(7):2603−2612.
doi: 10.1039/c0cp01996h
ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZHANG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew Chem Int Ed Eng,2018,57(37):12012−12016.
doi: 10.1002/anie.201807113
BORONAT M, MARTINEZ-SANCHEZ C, LAW D, CORMA A. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc,2008,130(48):16316−16323.
doi: 10.1021/ja805607m
LI B J, XU J, HAN B, WANG X M, QI G D, ZHANG Z F, WANG C, DENG F. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C,2013,117(11):5840−5847.
doi: 10.1021/jp400331m
HE T, REN P, LIU X, XU S, HAN X, BAO X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chem Commun,2015,51(94):16868−16870.
doi: 10.1039/C5CC07201H
RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, STUDT F, MOSES P G, ROSSMEISL J, RIISAGER A, JENSEN A D. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew Chem Int Ed Eng,2015,54(25):7261−7264.
doi: 10.1002/anie.201410974
CHENG Z Z, HUANG S Y, LI Y, CAI K, WANG Y, WANG M Y, LV J, MA X B. Role of Bronsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catal,2021,11(9):5647−5657.
doi: 10.1021/acscatal.1c00159
WANG X S, LI R J, YU C C, LIU Y X, XU C M, LU C X. Study on the deactivation process of dimethyl ether carbonylation reaction over mordenite catalyst[J]. Fuel,2021,286.
LIU Z, NUTT M A, IGLESIA E. The effects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5[J]. Catal Lett,2002,81(3/4):271−279.
XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res,2013,52(33):11510−11515.
doi: 10.1021/ie400909u
YAO J, WU Q, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, YANG G, TSUBAKI N. A carbonylation zeolite with specific nanosheet structure for efficient catalysis[J]. ACS Nano,2021,15(8):13568−13578.
doi: 10.1021/acsnano.1c04419
ASPROMONTE S G, MIRO E E, BOIX A V. Effect of Ag-Co interactions in the mordenite on the NOx SCR with butane and toluene[J]. Catal Commun,2012,28:105−110.
doi: 10.1016/j.catcom.2012.08.021
DE OLIVEIRA A M, CRIZEL L E, DA SILVEIRA R S, PERGHER S B C, BAIBICH I M. NO decomposition on mordenite-supported Pd and Cu catalysts[J]. Catal Commun,2007,8(8):1293−1297.
doi: 10.1016/j.catcom.2006.11.027
GUPTA N M, KAMBLE V S, RAO K A, IYER R M. Co adsorption desorption properties of cation-exchanged NaX zeolite and supported ruthenium[J]. J Catal,1989,120(2):432−443.
doi: 10.1016/0021-9517(89)90283-2
BENCO L, BUCKO T, HAFNER J, TOULHOAT H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption[J]. J Phys Chem B,2004,108(36):13656−13666.
doi: 10.1021/jp048056t
WANG S, GUO W, ZHU L, WANG H, QIU K, CEN K. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. J Phys Chem C,2014,119(1):524−533.
YANG G H, SAN X G, JIANG N, TANAKA Y, LI X G, JIN Q, TAO K, MENG F Z, TSUBAKI N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catal Today,2011,164(1):425−428.
doi: 10.1016/j.cattod.2010.10.027
KHANDAN N, KAZEMEINI M, AGHAZIARATI M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl Catal A: Gen,2008,349(1/2):6−12.
doi: 10.1016/j.apcata.2008.07.029
BLASCO T, BORONAT M, CONCEPCION P, CORMA A, LAW D, VIDAL-MOYA J A. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem Int Ed Eng,2007,46(21):3938−3941.
doi: 10.1002/anie.200700029
ZHANG X, LI Y P, QIU S B, WANG T J, MA L L, ZHANG Q, DING M Y. Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction[J]. Chin J Chem Phys,2013,26(2):220−224.
doi: 10.1063/1674-0068/26/02/220-224
REULE A A C, SEMAGINA N. Zinc hinders deactivation of copper-mordenite: Dimethyl ether carbonylation[J]. ACS Catal,2016,6(8):4972−4975.
doi: 10.1021/acscatal.6b01464
REULE A A C, PRASAD V, SEMAGINA N. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2018,263:220−230.
doi: 10.1016/j.micromeso.2017.12.026
REULE A A C, SHEN J, SEMAGINA N. Copper affects the location of zinc in bimetallic ion-exchanged mordenite[J]. Chemphyschem,2018,19(12):1500−1506.
doi: 10.1002/cphc.201800021
LI Y, HUANG S Y, CHENG Z Z, CAI K, LI L D, MILAN E, LV J, WANG Y, SUN Q, MA X B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Bronsted acids[J]. Appl Catal B: Environ,2019,256:117777.
SUSHKEVICH V L, VIMONT A, TRAVERT A, IVANOVA I I. Spectroscopic evidence for open and closed lewis acid sites in ZrBEA zeolites[J]. J Phys Chem C,2015,119(31):17633−17639.
doi: 10.1021/acs.jpcc.5b02745
ZHAO P, QIAN W, MA H, SHENG H, ZHANG H, YING W. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catal Lett,2020,151(4):940−954.
MA M, ZHAN E S, HUANG X M, TA N, XIONG Z P, BAI L Y, SHEN W J. Carbonylation of dimethyl ether over Co-HMOR[J]. Catal Sci Technol,2018,8(8):2124−2130.
doi: 10.1039/C8CY00407B
DĚDEČEK J, WICHTERLOVÁ B. Co2+ ion siting in pentasil-containing zeolites. I. Co2+ ion sites and their occupation in mordenite. A Vis−NIR diffuse reflectance spectroscopy study[J]. J Phys Chem B,1999,103(9):1462−1476.
doi: 10.1021/jp9818941
ZHOU H, ZHU W L, SHI L, LIU H C, LIU S P, XU S T, NI Y M, LIU Y, LI L, LIU Z M. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catal Sci Technol,2015,5(3):1961−1968.
doi: 10.1039/C4CY01580K
ZHOU Z Q, LIU H C, CHEN Z Y, ZHU W L, LIU Z M. Decarbonylation of carboxylic acids over H-mordenite[J]. ACS Catal,2021,11(7):4077−4083.
doi: 10.1021/acscatal.1c00235
HE T, HOU G J, LI J J, LIU X C, XU S T, HAN X W, BAO X H. Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite[J]. J Energy Chem,2017,26(3):354−358.
doi: 10.1016/j.jechem.2017.02.004
ZHAO N, TIAN Y, ZHANG L F, CHENG Q P, LYU S S, DING T, HU Z P, MA X B, LI X G. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chin J Catal,2019,40(6):895−904.
doi: 10.1016/S1872-2067(19)63335-8
CAO K P, FAN D, LI L Y, FAN B H, WANG L Y, ZHU D L, WANG Q Y, TIAN P, LIU Z M. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catal,2020,10(5):3372−3380.
doi: 10.1021/acscatal.9b04890
LI Y, SUN Q, HUANG S Y, CHENG Z Z, CAI K, LV J, MA X B. Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity[J]. Catal Today,2018,311:81−88.
doi: 10.1016/j.cattod.2017.08.050
REULE A A C, SAWADA J A, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. J Catal,2017,349:98−109.
doi: 10.1016/j.jcat.2017.03.010
LU B W, TSUDA T, SASAKI H, OUMI Y, ITABASHI K, TERANISHI T, SANO T. Effect of aluminum source on hydrothermal synthesis of high-silica mordenite in fluoride medium, and it's thermal stability[J]. Chem Mater,2004,16(2):286−291.
doi: 10.1021/cm030576y
CUI M, WANG L, ZHANG Y F, WANG Y, MENG C G. Changes of medium-range structure in the course of crystallization of mordenite from diatomite[J]. Microporous Mesoporous Mater,2015,206:52−57.
doi: 10.1016/j.micromeso.2014.12.016
MA Z P, XIE J Y, ZHANG J L, ZHANG W, ZHOU Y, WANG J. Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion[J]. Microporous Mesoporous Mater,2016,224:17−25.
doi: 10.1016/j.micromeso.2015.11.007
WANG X S, LI R J, YU C C, LIU Y X. Study on the reconstruction in the crystallization process of mordenite[J]. Microporous Mesoporous Mater,2021,311.
HUANG X M, MA M, LI M R, SHEN W J. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catal Sci Technol,2020,10(21):7280−7290.
doi: 10.1039/D0CY01362E
WANG M X, HUANG S Y, LU J, CHENG Z Z, LI Y, WANG S P, MA X B. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chin J Catal,2016,37(9):1530−1538.
doi: 10.1016/S1872-2067(16)62484-1
WANG X S, LI R J, YU C C, LIU Y X, LIU L M, XU C M, ZHOU H J, LU C X. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Ind Eng Chem Res,2019,58(39):18065−18072.
doi: 10.1021/acs.iecr.9b02610
YAO J, FENG X B, FAN J Q, HE Y L, KOSOL R, ZENG Y, LIU G B, MA Q X, YANG G H, TSUBAKI N. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2020,306:110431.
THOMPSON L H, DORAISWAMY L K. The rate enhancing effect of ultrasound by inducing supersaturation in a solid-liquid system[J]. Chem Eng Sci,2000,55(16):3085−3090.
doi: 10.1016/S0009-2509(99)00481-9
LI Y, YU M, CAI K, WANG M, LV J, HOWE R F, HUANG S, MA X. Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation[J]. Phys Chem Chem Phys,2020,22(20):11374−11381.
doi: 10.1039/D0CP00850H
WANG X S, LI R J, YU C C, LIU Y X, ZHANG L Y, XU C M, ZHOU H J. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel,2019,239:794−803.
doi: 10.1016/j.fuel.2018.10.147
KIM J, JO C, LEE S, RYOO R. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis[J]. J Mater Chem A,2014,2(30):11905−11912.
doi: 10.1039/C4TA01948B
TANG T, ZHANG L, FU W, MA Y, XU J, JIANG J, FANG G, XIAO F S. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc,2013,135(31):11437−11440.
doi: 10.1021/ja4043388
TAGO T, KONNO H, SAKAMOTO M, NAKASAKA Y, MASUDA T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes[J]. Appl Catal A: Gen,2011,403(1/2):183−191.
doi: 10.1016/j.apcata.2011.06.029
JANG H G, MIN H K, LEE J K, HONG S B, SEO G. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Appl Catal A: Gen,2012,437:120−130.
GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem,2009,305(1-2):69−83.
doi: 10.1016/j.molcata.2008.11.012
XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chin J Catal,2013,34(8):1496−1503.
doi: 10.1016/S1872-2067(12)60607-X
KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites: A short review[J]. Chin J Catal,2016,37(4):447−467.
doi: 10.1016/S1872-2067(15)61038-5
WEN F L, DING X N, FANG X D, LIU H C, ZHU W L. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catal Commun,2021,154.
MA M, HUANG X, ZHAN E, ZHOU Y, XUE H, SHEN W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. J Mater Chem A,2017,5(19):8887−8891.
doi: 10.1039/C7TA02477K
LIU Y, ZHAO N, XIAN H, CHENG Q, TAN Y, TSUBAKI N, LI X. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl Mater Inter,2015,7(16):8398−8403.
doi: 10.1021/acsami.5b01905
YUAN Y Y, WANG L Y, LIU H C, TIAN P, YANG M, XU S T, LIU Z M. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chin J Catal,2015,36(11):1910−1919.
doi: 10.1016/S1872-2067(15)60960-3
WANG X S, LI R J, YU C C, ZHANG L Y, XU C M, ZHOU H J. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous Mesoporous Mater,2019,274:227−235.
doi: 10.1016/j.micromeso.2018.07.048
SHENG H B, QIAN W X, ZHANG H T, ZHAO P, MA H F, YING W Y. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous Mesoporous Mater,2020,295:106309.
LU J X, WANG Y Q, SUN C, ZHAO T T, ZHAO J J, WANG Z Y, LIU W R, WU S H, SHI M X, BU L Z. Novel synthesis and catalytic performance of hierarchical MOR[J]. New J Chem,2021,45(19):8629−8638.
doi: 10.1039/D1NJ00133G
WEI Y, PARMENTIER T E, DE JONG K P, ZECEVIC J. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chem Soc Rev,2015,44(20):7234−7261.
doi: 10.1039/C5CS00155B
LIU S P, CHENG Z Z, LI Y, SUN J H, CAI K, HUANG S Y, LV J, WANG S P, MA X B. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Ind Eng Chem Res,2020,59(31):13861−13869.
doi: 10.1021/acs.iecr.0c01156
QIN Z X, HAFIZ L, SHEN Y F, VAN DAELE S, BOULLAY P, RUAUX V, MINTOVA S, GILSON J P, VALTCHEV V. Defect-engineered zeolite porosity and accessibility[J]. J Mater Chem A,2020,8(7):3621−3631.
doi: 10.1039/C9TA11465C
HE P, LI Y, CAI K, XIONG X, LV J, WANG Y, HUANG S Y, MA X B. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Appl Nano Mater,2020,3(7):6460−6468.
doi: 10.1021/acsanm.0c00929
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
.
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
(with permission from MSA Publication)
(with permission from CSJ Publication)
(with permission from Elsevier)
((a): with permission from Wiley Publication; (b): with permission from RSC Publication)
(with permission from ACS Publication)
(with permission from ACS Publication)
(with permission from ACS Publication)
(with permission from Wiley Publication)
(with permission from ACS Publication)
((a): with permission from RSC Publication; (b): with permission from ACS Publication)
(with permission from Elsevier)
(with permission from RSC Publication)
(with permission from Elsevier)
(with permission from ACS Publication)
(with permission from ACS Publication)