Citation: Sheng-ying ZHAO, Hai-lun GENG, Bing XU, Xue-mei WU, Ming-hui TAN, Guo-hui YANG, Yi-sheng TAN. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083 shu

Research progress on mordenite catalyzed carbonylation of dimethyl ether

  • Corresponding author: Guo-hui YANG, yanggh@sxicc.ac.cn
  • Received Date: 28 July 2021
    Revised Date: 4 September 2021

Figures(16)

  • The carbonylation reaction of dimethyl ether is an important carbon addition reaction with directed insertion of carbon monoxide into dimethyl ether molecule, which is of great significance in industrial production. In recent years, it has been found that inexpensive mordenite has higher activity and very excellent carbonylation product selectivity for catalyzing the carbonylation reaction of dimethyl ether, hence widely studied. This review surveys researches on mordenite catalyzed carbonylation of dimethyl ether, introduces the mechanism of carbonylation reaction, and summarizes the various methods of controlling the acidic sites inside mordenite and their effects on the carbonylation reaction.
  • 加载中
    1. [1]

      SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iridium - The Cativa (TM) process for the manufacture of acetic acid[J]. Catal Today,2000,58(4):293−307.  doi: 10.1016/S0920-5861(00)00263-7

    2. [2]

      WANG Yu-he, HE De-hua, XU Bo-qing. Studies of producing acetic acid by carbonylation of methanol[J]. Prog Chem,2003,(3):215−221.  doi: 10.3321/j.issn:1005-281X.2003.03.007

    3. [3]

      WEGMAN R W. Vapor-phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts[J]. J Chem Soc Chem Comm,1994,(8):947−948.  doi: 10.1039/c39940000947

    4. [4]

      CHEUNG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed Eng,2006,45(10):1617−1620.  doi: 10.1002/anie.200503898

    5. [5]

      SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fues,2009,23(5/6):2843−2844.

    6. [6]

      LI X, SAN X, ZHANG Y, ICHII T, MENG M, TAN Y, TSUBAKI N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem,2010,3(10):1192−1199.  doi: 10.1002/cssc.201000109

    7. [7]

      BHAN A, ALLIAN A D, SUNLEY G J, LAW D J, IGLESIA E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc,2007,129(16):4919−4924.  doi: 10.1021/ja070094d

    8. [8]

      FENG X, YAO J, LI H, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. A brand new zeolite catalyst for carbonylation reaction[J]. Chem Commun,2019,55(8):1048−1051.  doi: 10.1039/C8CC08411D

    9. [9]

      LUSARDI M, CHEN T T, KALE M, KANG J H, NEUROCK M, DAVIS M E. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catal,2019,10(1):842−851.

    10. [10]

      JUNG H S, XUAN N T, BAE J W. Carbonylation of dimethyl ether on ferrierite zeolite: Effects of crystallinity to coke distribution and deactivation[J]. Microporous Mesoporous Mater,2021,310:110669.

    11. [11]

      HAM H, JUNG H S, KIM H S, KIM J, CHO S J, LEE W B, PARK M J, BAE J W. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite[J]. ACS Catal,2020,10(9):5135−5146.  doi: 10.1021/acscatal.9b05144

    12. [12]

      SANO T, WAKABAYASHI S, OUMI Y, UOZUMI T. Synthesis of large mordenite crystals in the presence of aliphatic alcohol[J]. Microporous Mesoporous Mater,2001,46(1):67−74.  doi: 10.1016/S1387-1811(01)00285-2

    13. [13]

      SIMONCIC P, ARMBRUSTER T. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal X-ray study[J]. Am Mineral,2004,89(2/3):421−431.  doi: 10.2138/am-2004-2-323

    14. [14]

      MEIER W Μ. The crystal structure of mordenite (ptilolite)[J]. Z Krist-Cryst Mater,1961,115(1/6):439−450.  doi: 10.1524/zkri.1961.115.16.439

    15. [15]

      FERNANDES L D, MONTEIRO J L F, SOUSA-AGUIAR E F, MARTINEZ A, CORMA A. Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure[J]. J Catal,1998,177(2):363−377.  doi: 10.1006/jcat.1998.2111

    16. [16]

      TSAI T C, CHEN W H, LAI C S, LIU S B, WANG I, KU C S. Kinetics of toluene disproportionation over fresh and coked H-mordenite[J]. Catal Today,2004,97(4):297−302.  doi: 10.1016/j.cattod.2004.07.013

    17. [17]

      LU K, HUANG J, REN L, LI C, GUAN Y, HU B, XU H, JIANG J, MA Y, WU P. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angew Chem Int Ed Eng,2020,59(15):6258−6262.  doi: 10.1002/anie.202000269

    18. [18]

      ISSA H, TOUFAILY J, HAMIEH T, COMPAROT J D, SACHSE A, PINARD L. Mordenite etching in pyridine: Textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking[J]. J Catal,2019,374:409−421.  doi: 10.1016/j.jcat.2019.05.004

    19. [19]

      BLAY V, LOUIS B, MIRAVALLES R, YOKOI T, PECCATIELLO K A, CLOUGH M, YILMAZ B. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catal,2017,7(10):6542−6566.  doi: 10.1021/acscatal.7b02011

    20. [20]

      WULFERS M J, JENTOFT F C. Identification of carbonaceous deposits formed on H-mordenite during alkane isomerization[J]. J Catal,2013,307:204−213.  doi: 10.1016/j.jcat.2013.07.011

    21. [21]

      SEGAWA K, SHIMURA T. Effect of dealumination of mordenite by acid-leaching for selective synthesis of ethylenediamine from ethanolamine[J]. Appl Catal A: Gen,2000,194:309−317.

    22. [22]

      MA Meng. Shape control of mordenite and its catalytic performance for dimethyl carbonyl carbonylation[D]. Beijing: University of Chinese Academy of Sciences, 2018.

    23. [23]

      FUJIMOTO K, SHIKADA T, OMATA K, TOMINAGA H. Vapor-phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett,1984,(12):2047−2050.

    24. [24]

      CHEUNG P, BHAN A, SUNLEY G J, LAW D J, IGLESIA E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal,2007,245(1):110−123.  doi: 10.1016/j.jcat.2006.09.020

    25. [25]

      LIU Z Q, YI X F, WANG G R, TANG X M, LI G C, HUANG L, ZHENG A M. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion[J]. J Catal,2019,369:335−344.  doi: 10.1016/j.jcat.2018.11.024

    26. [26]

      LIU S P, LIU H C, MA X G, LIU Y, ZHU W L, LIU Z M. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catal Sci Technol,2020,10(14):4663−4672.  doi: 10.1039/D0CY00125B

    27. [27]

      LIU J L, XUE H F, HUANG X M, WU P H, HUANG S J, LIU S B, SHEN W J. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chin J Catal,2010,31(7):729−738.  doi: 10.1016/S1872-2067(09)60081-4

    28. [28]

      XUE H F, HUANG X M, ZHAN E S, MA M, SHEN W J. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catal Commun,2013,37:75−79.  doi: 10.1016/j.catcom.2013.03.033

    29. [29]

      ZHAN H M, HUANG S Y, LI Y, LV J, WANG S P, MA X B. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catal Sci Technol,2015,5(9):4378−4389.  doi: 10.1039/C5CY00460H

    30. [30]

      LU P, CHEN Q J, YANG G H, TAN L, FENG X B, YAO J, YONEYAMA Y, TSUBAKI N. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal,2020,10(2):1366−1374.  doi: 10.1021/acscatal.9b02891

    31. [31]

      ZHOU Hui. Studies on carbonylation of dimethyl ether catalyzed by zeolites[D]. Beijing: University of Chinese Academy of Sciences, 2016.

    32. [32]

      BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys,2011,13(7):2603−2612.  doi: 10.1039/c0cp01996h

    33. [33]

      ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZHANG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew Chem Int Ed Eng,2018,57(37):12012−12016.  doi: 10.1002/anie.201807113

    34. [34]

      BORONAT M, MARTINEZ-SANCHEZ C, LAW D, CORMA A. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc,2008,130(48):16316−16323.  doi: 10.1021/ja805607m

    35. [35]

      LI B J, XU J, HAN B, WANG X M, QI G D, ZHANG Z F, WANG C, DENG F. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C,2013,117(11):5840−5847.  doi: 10.1021/jp400331m

    36. [36]

      HE T, REN P, LIU X, XU S, HAN X, BAO X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chem Commun,2015,51(94):16868−16870.  doi: 10.1039/C5CC07201H

    37. [37]

      RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, STUDT F, MOSES P G, ROSSMEISL J, RIISAGER A, JENSEN A D. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew Chem Int Ed Eng,2015,54(25):7261−7264.  doi: 10.1002/anie.201410974

    38. [38]

      CHENG Z Z, HUANG S Y, LI Y, CAI K, WANG Y, WANG M Y, LV J, MA X B. Role of Bronsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catal,2021,11(9):5647−5657.  doi: 10.1021/acscatal.1c00159

    39. [39]

      WANG X S, LI R J, YU C C, LIU Y X, XU C M, LU C X. Study on the deactivation process of dimethyl ether carbonylation reaction over mordenite catalyst[J]. Fuel,2021,286.

    40. [40]

      LIU Z, NUTT M A, IGLESIA E. The effects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5[J]. Catal Lett,2002,81(3/4):271−279.

    41. [41]

      XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res,2013,52(33):11510−11515.  doi: 10.1021/ie400909u

    42. [42]

      YAO J, WU Q, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, YANG G, TSUBAKI N. A carbonylation zeolite with specific nanosheet structure for efficient catalysis[J]. ACS Nano,2021,15(8):13568−13578.  doi: 10.1021/acsnano.1c04419

    43. [43]

      ASPROMONTE S G, MIRO E E, BOIX A V. Effect of Ag-Co interactions in the mordenite on the NOx SCR with butane and toluene[J]. Catal Commun,2012,28:105−110.  doi: 10.1016/j.catcom.2012.08.021

    44. [44]

      DE OLIVEIRA A M, CRIZEL L E, DA SILVEIRA R S, PERGHER S B C, BAIBICH I M. NO decomposition on mordenite-supported Pd and Cu catalysts[J]. Catal Commun,2007,8(8):1293−1297.  doi: 10.1016/j.catcom.2006.11.027

    45. [45]

      GUPTA N M, KAMBLE V S, RAO K A, IYER R M. Co adsorption desorption properties of cation-exchanged NaX zeolite and supported ruthenium[J]. J Catal,1989,120(2):432−443.  doi: 10.1016/0021-9517(89)90283-2

    46. [46]

      BENCO L, BUCKO T, HAFNER J, TOULHOAT H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption[J]. J Phys Chem B,2004,108(36):13656−13666.  doi: 10.1021/jp048056t

    47. [47]

      WANG S, GUO W, ZHU L, WANG H, QIU K, CEN K. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. J Phys Chem C,2014,119(1):524−533.

    48. [48]

      YANG G H, SAN X G, JIANG N, TANAKA Y, LI X G, JIN Q, TAO K, MENG F Z, TSUBAKI N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catal Today,2011,164(1):425−428.  doi: 10.1016/j.cattod.2010.10.027

    49. [49]

      KHANDAN N, KAZEMEINI M, AGHAZIARATI M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl Catal A: Gen,2008,349(1/2):6−12.  doi: 10.1016/j.apcata.2008.07.029

    50. [50]

      BLASCO T, BORONAT M, CONCEPCION P, CORMA A, LAW D, VIDAL-MOYA J A. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem Int Ed Eng,2007,46(21):3938−3941.  doi: 10.1002/anie.200700029

    51. [51]

      ZHANG X, LI Y P, QIU S B, WANG T J, MA L L, ZHANG Q, DING M Y. Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction[J]. Chin J Chem Phys,2013,26(2):220−224.  doi: 10.1063/1674-0068/26/02/220-224

    52. [52]

      REULE A A C, SEMAGINA N. Zinc hinders deactivation of copper-mordenite: Dimethyl ether carbonylation[J]. ACS Catal,2016,6(8):4972−4975.  doi: 10.1021/acscatal.6b01464

    53. [53]

      REULE A A C, PRASAD V, SEMAGINA N. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2018,263:220−230.  doi: 10.1016/j.micromeso.2017.12.026

    54. [54]

      REULE A A C, SHEN J, SEMAGINA N. Copper affects the location of zinc in bimetallic ion-exchanged mordenite[J]. Chemphyschem,2018,19(12):1500−1506.  doi: 10.1002/cphc.201800021

    55. [55]

      LI Y, HUANG S Y, CHENG Z Z, CAI K, LI L D, MILAN E, LV J, WANG Y, SUN Q, MA X B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Bronsted acids[J]. Appl Catal B: Environ,2019,256:117777.

    56. [56]

      SUSHKEVICH V L, VIMONT A, TRAVERT A, IVANOVA I I. Spectroscopic evidence for open and closed lewis acid sites in ZrBEA zeolites[J]. J Phys Chem C,2015,119(31):17633−17639.  doi: 10.1021/acs.jpcc.5b02745

    57. [57]

      ZHAO P, QIAN W, MA H, SHENG H, ZHANG H, YING W. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catal Lett,2020,151(4):940−954.

    58. [58]

      MA M, ZHAN E S, HUANG X M, TA N, XIONG Z P, BAI L Y, SHEN W J. Carbonylation of dimethyl ether over Co-HMOR[J]. Catal Sci Technol,2018,8(8):2124−2130.  doi: 10.1039/C8CY00407B

    59. [59]

      DĚDEČEK J, WICHTERLOVÁ B. Co2+ ion siting in pentasil-containing zeolites. I. Co2+ ion sites and their occupation in mordenite. A Vis−NIR diffuse reflectance spectroscopy study[J]. J Phys Chem B,1999,103(9):1462−1476.  doi: 10.1021/jp9818941

    60. [60]

      ZHOU H, ZHU W L, SHI L, LIU H C, LIU S P, XU S T, NI Y M, LIU Y, LI L, LIU Z M. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catal Sci Technol,2015,5(3):1961−1968.  doi: 10.1039/C4CY01580K

    61. [61]

      ZHOU Z Q, LIU H C, CHEN Z Y, ZHU W L, LIU Z M. Decarbonylation of carboxylic acids over H-mordenite[J]. ACS Catal,2021,11(7):4077−4083.  doi: 10.1021/acscatal.1c00235

    62. [62]

      HE T, HOU G J, LI J J, LIU X C, XU S T, HAN X W, BAO X H. Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite[J]. J Energy Chem,2017,26(3):354−358.  doi: 10.1016/j.jechem.2017.02.004

    63. [63]

      ZHAO N, TIAN Y, ZHANG L F, CHENG Q P, LYU S S, DING T, HU Z P, MA X B, LI X G. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chin J Catal,2019,40(6):895−904.  doi: 10.1016/S1872-2067(19)63335-8

    64. [64]

      CAO K P, FAN D, LI L Y, FAN B H, WANG L Y, ZHU D L, WANG Q Y, TIAN P, LIU Z M. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catal,2020,10(5):3372−3380.  doi: 10.1021/acscatal.9b04890

    65. [65]

      LI Y, SUN Q, HUANG S Y, CHENG Z Z, CAI K, LV J, MA X B. Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity[J]. Catal Today,2018,311:81−88.  doi: 10.1016/j.cattod.2017.08.050

    66. [66]

      REULE A A C, SAWADA J A, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. J Catal,2017,349:98−109.  doi: 10.1016/j.jcat.2017.03.010

    67. [67]

      LU B W, TSUDA T, SASAKI H, OUMI Y, ITABASHI K, TERANISHI T, SANO T. Effect of aluminum source on hydrothermal synthesis of high-silica mordenite in fluoride medium, and it's thermal stability[J]. Chem Mater,2004,16(2):286−291.  doi: 10.1021/cm030576y

    68. [68]

      CUI M, WANG L, ZHANG Y F, WANG Y, MENG C G. Changes of medium-range structure in the course of crystallization of mordenite from diatomite[J]. Microporous Mesoporous Mater,2015,206:52−57.  doi: 10.1016/j.micromeso.2014.12.016

    69. [69]

      MA Z P, XIE J Y, ZHANG J L, ZHANG W, ZHOU Y, WANG J. Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion[J]. Microporous Mesoporous Mater,2016,224:17−25.  doi: 10.1016/j.micromeso.2015.11.007

    70. [70]

      WANG X S, LI R J, YU C C, LIU Y X. Study on the reconstruction in the crystallization process of mordenite[J]. Microporous Mesoporous Mater,2021,311.

    71. [71]

      HUANG X M, MA M, LI M R, SHEN W J. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catal Sci Technol,2020,10(21):7280−7290.  doi: 10.1039/D0CY01362E

    72. [72]

      WANG M X, HUANG S Y, LU J, CHENG Z Z, LI Y, WANG S P, MA X B. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chin J Catal,2016,37(9):1530−1538.  doi: 10.1016/S1872-2067(16)62484-1

    73. [73]

      WANG X S, LI R J, YU C C, LIU Y X, LIU L M, XU C M, ZHOU H J, LU C X. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Ind Eng Chem Res,2019,58(39):18065−18072.  doi: 10.1021/acs.iecr.9b02610

    74. [74]

      YAO J, FENG X B, FAN J Q, HE Y L, KOSOL R, ZENG Y, LIU G B, MA Q X, YANG G H, TSUBAKI N. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2020,306:110431.

    75. [75]

      THOMPSON L H, DORAISWAMY L K. The rate enhancing effect of ultrasound by inducing supersaturation in a solid-liquid system[J]. Chem Eng Sci,2000,55(16):3085−3090.  doi: 10.1016/S0009-2509(99)00481-9

    76. [76]

      LI Y, YU M, CAI K, WANG M, LV J, HOWE R F, HUANG S, MA X. Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation[J]. Phys Chem Chem Phys,2020,22(20):11374−11381.  doi: 10.1039/D0CP00850H

    77. [77]

      WANG X S, LI R J, YU C C, LIU Y X, ZHANG L Y, XU C M, ZHOU H J. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel,2019,239:794−803.  doi: 10.1016/j.fuel.2018.10.147

    78. [78]

      KIM J, JO C, LEE S, RYOO R. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis[J]. J Mater Chem A,2014,2(30):11905−11912.  doi: 10.1039/C4TA01948B

    79. [79]

      TANG T, ZHANG L, FU W, MA Y, XU J, JIANG J, FANG G, XIAO F S. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc,2013,135(31):11437−11440.  doi: 10.1021/ja4043388

    80. [80]

      TAGO T, KONNO H, SAKAMOTO M, NAKASAKA Y, MASUDA T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes[J]. Appl Catal A: Gen,2011,403(1/2):183−191.  doi: 10.1016/j.apcata.2011.06.029

    81. [81]

      JANG H G, MIN H K, LEE J K, HONG S B, SEO G. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Appl Catal A: Gen,2012,437:120−130.

    82. [82]

      GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem,2009,305(1-2):69−83.  doi: 10.1016/j.molcata.2008.11.012

    83. [83]

      XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chin J Catal,2013,34(8):1496−1503.  doi: 10.1016/S1872-2067(12)60607-X

    84. [84]

      KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites: A short review[J]. Chin J Catal,2016,37(4):447−467.  doi: 10.1016/S1872-2067(15)61038-5

    85. [85]

      WEN F L, DING X N, FANG X D, LIU H C, ZHU W L. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catal Commun,2021,154.

    86. [86]

      MA M, HUANG X, ZHAN E, ZHOU Y, XUE H, SHEN W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. J Mater Chem A,2017,5(19):8887−8891.  doi: 10.1039/C7TA02477K

    87. [87]

      LIU Y, ZHAO N, XIAN H, CHENG Q, TAN Y, TSUBAKI N, LI X. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl Mater Inter,2015,7(16):8398−8403.  doi: 10.1021/acsami.5b01905

    88. [88]

      YUAN Y Y, WANG L Y, LIU H C, TIAN P, YANG M, XU S T, LIU Z M. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chin J Catal,2015,36(11):1910−1919.  doi: 10.1016/S1872-2067(15)60960-3

    89. [89]

      WANG X S, LI R J, YU C C, ZHANG L Y, XU C M, ZHOU H J. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous Mesoporous Mater,2019,274:227−235.  doi: 10.1016/j.micromeso.2018.07.048

    90. [90]

      SHENG H B, QIAN W X, ZHANG H T, ZHAO P, MA H F, YING W Y. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous Mesoporous Mater,2020,295:106309.

    91. [91]

      LU J X, WANG Y Q, SUN C, ZHAO T T, ZHAO J J, WANG Z Y, LIU W R, WU S H, SHI M X, BU L Z. Novel synthesis and catalytic performance of hierarchical MOR[J]. New J Chem,2021,45(19):8629−8638.  doi: 10.1039/D1NJ00133G

    92. [92]

      WEI Y, PARMENTIER T E, DE JONG K P, ZECEVIC J. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chem Soc Rev,2015,44(20):7234−7261.  doi: 10.1039/C5CS00155B

    93. [93]

      LIU S P, CHENG Z Z, LI Y, SUN J H, CAI K, HUANG S Y, LV J, WANG S P, MA X B. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Ind Eng Chem Res,2020,59(31):13861−13869.  doi: 10.1021/acs.iecr.0c01156

    94. [94]

      QIN Z X, HAFIZ L, SHEN Y F, VAN DAELE S, BOULLAY P, RUAUX V, MINTOVA S, GILSON J P, VALTCHEV V. Defect-engineered zeolite porosity and accessibility[J]. J Mater Chem A,2020,8(7):3621−3631.  doi: 10.1039/C9TA11465C

    95. [95]

      HE P, LI Y, CAI K, XIONG X, LV J, WANG Y, HUANG S Y, MA X B. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Appl Nano Mater,2020,3(7):6460−6468.  doi: 10.1021/acsanm.0c00929

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    6. [6]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    7. [7]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    8. [8]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    20. [20]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return