Citation: Kai-wen ZHANG, Xin-yao LIU, Lei ZHANG, Shao-jun QING, Cai-shun ZHANG, Ya-jie LIU, Zhi-xian GAO. Cu-Zn-Al spinel catalyst for hydrogen production from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 494-502. doi: 10.19906/j.cnki.JFCT.2021082 shu

Cu-Zn-Al spinel catalyst for hydrogen production from methanol steam reforming

Figures(11)

  • The Cu-Zn-Al ternary spinel catalysts were synthesized by the wet ball milling method using copper nitrate, zinc nitrate, pseudoboehmite and citric acid as the raw materials. TG-DTA, XRD, N2 physical adsorption, H2-TPR, XPS and other characterization methods were used to study the effects of different Cu/Zn/Al molar ratios on the crystal phase composition, specific surface area, reduction performance and surface properties of the catalysts, and the catalytic performances of the catalysts were investigated by methanol steam reforming (MSR) for hydrogen production. The results indicate that comparing with the binary Cu-Al spinel, Cu-Zn-Al ternary spinel catalysts have high crystallinity, large surface area and are difficult to be reduced, which show improved catalytic performance and totally different sustained release behavior. The Cu-Zn-Al spinel catalyst with Cu∶Zn∶Al = 0.8∶0.2∶2.5 (molar ratio) exhibited the highest stable catalytic activity in MSR under a reaction temperature of 265 ℃, water/methanol ratio of 2 and mass space velocity of 2.25 h−1. The findings of this work might be served as basic data for further research of such ternary spinel catalysts.
  • 加载中
    1. [1]

      HOLM T, BORSBOOM H T, HERRERA O, MERIDA W. Hydrogen costs from water electrolysis at high temperature and pressure[J]. Energ Convers Manage,2021,237:114106−114120.  doi: 10.1016/j.enconman.2021.114106

    2. [2]

      KIM S H, KUMAR G, CHEN W H, KHANAL S K. Renewable hydrogen production from biomass and wastes[J]. Bioresource Technol,2021,331:125024−125029.  doi: 10.1016/j.biortech.2021.125024

    3. [3]

      QIAO W J, YANG S Q, ZHANG L, TIAN Y, WANG H H, ZHANG C S, GAO Z X. Performance of Cu-Ce/M-Al (M = Mg, Ni, Co, Zn) hydrotalcite derived catalysts for hydrogen production from methanol steam reforming[J]. Int J Energy Res,2021,45:12773−12784.  doi: 10.1002/er.6610

    4. [4]

      QING Shao-jun, HOU Xiao-ning, LI Lin-dong, ZHANG Lei, CHEN Kai-hua, GAO Zhi-xian, FAN Wei-bin. Application feasibility and development prospect of methanol to hydrogen technology for hydrogen fuel cell vehicle[J]. Energy Energy Conser,2019,2:62−65.  doi: 10.3969/j.issn.2095-0802.2019.06.027

    5. [5]

      YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy,2019,44:7252−7261.  doi: 10.1016/j.ijhydene.2019.01.254

    6. [6]

      MIERCZYNSKI P, MOSINSKA M, MANIUKIEWICZ W, NOWOSIELSKA M, CZYLKOWSKA A, SZYNKOWSKA M I. Oxy-steam reforming of methanol on copper catalysts[J]. React Kinet Mech Catal,2019,127:857−874.  doi: 10.1007/s11144-019-01609-6

    7. [7]

      XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53:11886−11889.  doi: 10.1002/anie.201405213

    8. [8]

      LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol,2020,48(3):338−348.  doi: 10.3969/j.issn.0253-2409.2020.03.010

    9. [9]

      QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xin. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming: Effects of different copper sources[J]. J Fuel Chem Technol,2017,45(12):1481−1488.  doi: 10.3969/j.issn.0253-2409.2017.12.010

    10. [10]

      AREAN C O, VINUELA DIEZ J S, GONZALEZ J M, ARJONA A M. Crystal chemistry of CuxZn1−xAl2O4 spinels[J]. Mater Chem,1981,6:165.  doi: 10.1016/0390-6035(81)90039-0

    11. [11]

      NESTOUR A L, GAUDON M, VILLENEUVE G, DATURI M, ANDRIESSEN R, DEMOURGUES A. Defects in divided zinc-copper aluminate spinels: Structural features and optical absorption properties[J]. Inorg Chem,2007,46:4067−4078.  doi: 10.1021/ic0624064

    12. [12]

      ANAND G T, KENNEDY L J. One-pot microwave combustion synthesis of porous Zn1bzx xCuxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures[J]. J Nanosci Nanotechnol,2013,4:3096−3103.

    13. [13]

      HOU X N, QING S J, LIU Y J, ZHANG L, ZHANG C S, FENG G, WANG X, GAO Z X, QIN Y. Cu1−xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel,2021,284:119041−119051.  doi: 10.1016/j.fuel.2020.119041

    14. [14]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem,2018,10:5698−5706.  doi: 10.1002/cctc.201801472

    15. [15]

      TIKHOV S F, VALEEV K R, SALANOV A N, CHEREPANOVA S V, BOLDYREVA N N, ZAIKOVSKII V I, SADYKOV V A, DUDINA D V, LOMOVSKY O I, ROMANENKOV V E. Phase formation during high-energy ball milling of the 33Al-45Cu-22Fe (at.%) powder mixture[J]. J Alloy Compd,2018,736:289−296.  doi: 10.1016/j.jallcom.2017.11.100

    16. [16]

      YAN Xiao-feng, GAO Wen-gui, MAO Wen-shuo, NA Wei, HUO Hai-hui, CHANG Shuai. Preparation of Cu-ZnO-ZrO2 catalyst by sol-gel method: Effect of citric acid content on catalyst performance[J]. Chem Ind Eng Progress,2020,39(10):4032−4040.

    17. [17]

      HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2020,45:477−489.  doi: 10.1016/j.ijhydene.2019.10.164

    18. [18]

      MIERCZYNSKI P, VASILEV K, MIERCZYNSKA A, MANIUKIEWICZ W, MANIECKI T. The effect of ZnAl2O4 on the performance of Cu/ZnxAlyOx+1.5y supported catalysts in steam reforming of methanol[J]. Top Catal,2013,56:1015−1025.  doi: 10.1007/s11244-013-0065-7

    19. [19]

      XIAO Guo-peng, QIAO Wei-jun, ZHANG Lei, QING Shao-jun, ZHANG Cai-shun, GAO Zhi-xian. Study on hydrogen production catalytic materials for perovskite methanol steam reforming[J]. Acta Chim Sinica,2021,79(1):100−107.  doi: 10.6023/A20080374

    20. [20]

      HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X = Fe, Mn, Al, La)[J]. Ceram Int,2014,40:4541−4551.  doi: 10.1016/j.ceramint.2013.08.130

    21. [21]

      LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod,2018,183:415−423.  doi: 10.1016/j.jclepro.2018.02.088

    22. [22]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078.  doi: 10.1039/C7CY01236E

    23. [23]

      JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production by methanol steam reforming[J]. Acta Chim Sin,2021,79(4):513−519.  doi: 10.6023/A20120562

    24. [24]

      HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(II) in Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol,2019,9:2993−3001.  doi: 10.1039/C9CY00563C

    25. [25]

      AKIKA F Z, BENAMIRA M, LAHMAR H, TRARI M, AVRAMOVA I, SUZER S. Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight[J]. Surf Interfaces,2020,18:100406−100416.  doi: 10.1016/j.surfin.2019.100406

    26. [26]

      WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal,1981,3(5):211−225.  doi: 10.1002/sia.740030506

    27. [27]

      XI Hong-juan, LI Guang-jun, QING Shao-jun, HOU Xiao-ning, ZHAO Jin-zhen, LIU Ya-jie, GAO Zhi-xian. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. J Fuel Chem Technol,2013,41(8):998−1002.  doi: 10.3969/j.issn.0253-2409.2013.08.015

    28. [28]

      QING S J, HOU X N, LIU Y J, XI H J, WANG X, CHEN C M, WU Z W, GAO Z X. A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition[J]. RSC Adv,2014,4:52008−52011.  doi: 10.1039/C4RA10101D

    29. [29]

      QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(10):1210−1217.  doi: 10.3969/j.issn.0253-2409.2018.10.008

    30. [30]

      QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun,2018,54:12242−12245.  doi: 10.1039/C8CC06600K

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    4. [4]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    10. [10]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    19. [19]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(0)
  • Abstract views(988)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return