Citation: Pei-qi CHU, Sai-fei WANG, Shi-guang ZHAO, Yi ZHANG, Ji-guang DENG, Yu-xi LIU, Meng GUO, Er-hong DUAN. Research progress of reaction mechanism and catalysts on catalytic methane combustion[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 180-194. doi: 10.19906/j.cnki.JFCT.2021077 shu

Research progress of reaction mechanism and catalysts on catalytic methane combustion

Figures(11)

  • Large amounts of methane are emitted from coal mining and industrial applications such as gas turbines or mobile sources which also have the characteristics of low concentration and huge volume, and the traditional high temperature incineration method leads to secondary pollution. Therefore, the efficient conversion of methane at low temperature has become an urgent problem. From the perspectives of energy utilization and environmental protection, the catalytic combustion technology is a valid measure to achieve efficient and clear utilization of methane. In this paper, a systematic review of recent research advances in catalytic mechanisms and catalysts is presented. Firstly, the mechanism of methane oxidation is summarized and outlined based on experiments and theories, with emphasis on the "Two-term" model. Secondly, the performance advantages and disadvantages of each catalyst and modification techniques are systematically introduced. Lastly, the perspectives for the future research are proposed, for instance, the use of structural optimization methods to expose more active sites or generate multi-component synergistic catalytic effects, the use of non-noble metal doping and other enhancements to prepare highly efficient catalysts, and the further co-excitation of catalytic performance by multiple external fields. In addition, the improvement of various catalytic mechanisms themselves and the development of new mechanism descriptors are also important directions for the future research.
  • 加载中
    1. [1]

      CARAVAGGIO G, NOSSOVA L M, TURNBULL M J. Nickel-magnesium mixed oxide catalyst for low temperature methane oxidation[J]. Chem Eng J,2021,405:126862.  doi: 10.1016/j.cej.2020.126862

    2. [2]

      KURNIA J C, XU P, SASMITO A P. A novel concept of enhanced gas recovery strategy from ventilation air methane in underground coal mines-a computational investigation[J]. J Nat Gas Sci Eng,2016,35:661−672.  doi: 10.1016/j.jngse.2016.09.013

    3. [3]

      LIU Gui-feng, PI Xi-ning, WANG Shuan-lin, LIAN Zhen-shan, ZHANG Zhi-rong. Status analysis of gas extraction and utilization technology[J]. Coal Chem Ind,2015,38(3):5−8.

    4. [4]

      AHMAD Y H, MOHAMED A T, AL-QARADAWI S Y. Exploring halloysite nanotubes as catalyst support for methane combustion: Influence of support pretreatment[J]. Appl Clay Sci,2021,201:105956.  doi: 10.1016/j.clay.2020.105956

    5. [5]

      ZHANG Zhao-rui, DANG Wen-long, GENG Li. Research progress of the catalysts for catalytic combustion of coal mine ventilation air methane[J]. Shaanxi Coal,2020,39(S1):127−133.

    6. [6]

      MIAO Fei-fei, MAO Dong-sen, GUO Xiao-ming, YU Jun, HUNANG Hou-jin. Progress of precious metals catalysts for catalytic combustion of volatile organic compounds[J]. J Technol,2019,19(3):242−248.  doi: 10.3969/j.issn.2096-3424.2019.03.006

    7. [7]

      PAN K L, PAN G T, CHONG S, CHANG M B. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. J Environ Sci,2018,69:205−216.  doi: 10.1016/j.jes.2017.10.012

    8. [8]

      XIE Zai-ku, JIN Zhong-hao, WANG Yang-dong. Design and construction of a hydrogen energy system covering low-carbon production and highly efficient storage based on the concept of green hydrogen science[J]. Sci China-Chem,2013,43(1):1−9.

    9. [9]

      WANG Z Y, MA K D, WANG J, PAN L W. Research progress of non-noble-metal catalysts for methane catalytic combustion[J]. China Biogas,2019,37(01):9−14.

    10. [10]

      ZHANG Hong-yan, DU Shuang-li. WANG Xue-feng. Research progress of non-noble metal catalysts for methane catalytic combustion[J]. Na Gas Ind,2021,46(2):10−14+127.

    11. [11]

      CHEN J H, ARANDIYAN H, GAO X, LI J H. Recent advances in catalysts for methane combustion[J]. Catal Surv from Asia,2015,19(3):140−171.  doi: 10.1007/s10563-015-9191-5

    12. [12]

      CHEN Ming, WANG Xin, JIAO Wen-ling, WANG Yan-lian. Research progress in mechanism and catalysts for methane catalytic combustion[J]. Gas Heat,2010,30(11):34−37.  doi: 10.3969/j.issn.1000-4416.2010.11.010

    13. [13]

      LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Process Technol,1995,42(2):339−359.

    14. [14]

      HAN Wei-ping. Introduction to Catalytic Chemistry[M]. Beijing: China Science and Technology Press, 2003.

    15. [15]

      HE L, FAN Y, BELLETTRE J, YUE J, LUO L A. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable Sustainable Energy Rev,2020,119:109589.  doi: 10.1016/j.rser.2019.109589

    16. [16]

      DU J C, LI H, WANG C X, ZHANG A M, ZHAO Y K, LUO Y M. Improved catalytic activity over P-doped ceria-zirconia-alumina supported palladium catalysts for methane oxidation[J]. Catal Commun,2020,141:106012.  doi: 10.1016/j.catcom.2020.106012

    17. [17]

      LEE J E, OK Y S, TSANG D C W, SONG J, JUNG S C, PARK Y K. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Sci Total Environ,2020,719:137405.  doi: 10.1016/j.scitotenv.2020.137405

    18. [18]

      ZASADA F, JANAS J, PISKORZ W, GORCZYNSKA M, SOJKA Z. Total oxidation of lean methane over cobalt spinel nanocubes con-trolled by the self-adjusted redox state of the catalyst: Experimental and theoretical account for interplay between the Langmuir-Hinshelwood and Mars-Van Krevelen mechanisms[J]. ACS Catal,2017,7:2853−2867.  doi: 10.1021/acscatal.6b03139

    19. [19]

      SPECCHIA S, CONTI F, SPECCHIA V. Kinetic studies on Pd/CexZr1−xO2 catalyst for methane combustion[J]. Ind Eng Chem Res,2010,21:11101−11111.

    20. [20]

      NEUBERG S, PENNEMANN H, SHANMUGAM V, ZAPF R, KOLB G. Promoting effect of Rh on the activity and stability of Pt-based methane combustion catalyst in microreactors[J]. Catal Commun,2021,149:106202.  doi: 10.1016/j.catcom.2020.106202

    21. [21]

      OH S H, MITCHELL P J, SIEWERT R M. Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives[J]. J Catal,1991,132:287−301.  doi: 10.1016/0021-9517(91)90149-X

    22. [22]

      WANG T, ZHANG C, WANG J, LI H, DUAN Y, LIU Z, LEE J Y, HU X, XI S, DU Y, SUN S, LIU X, LEE J M, WANG C, XU Z J. The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides[J]. J Catal,2020,390:1−11.  doi: 10.1016/j.jcat.2020.07.007

    23. [23]

      WANG T, WANG J, SUN Y, DUAN Y, SUN S, HU X, XI S, DU Y, WANG C, XU Z J. Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation[J]. Appl Catal B: Environ,2019,256:117844.  doi: 10.1016/j.apcatb.2019.117844

    24. [24]

      LI H, FENG F, DU J C, GUO M X, ZHANG A M. Research progress of Pd/Al2O3 catalysts for methane combustion[J]. Precious Metals,2020,41(02):66−74.

    25. [25]

      QIN Z F, HAN X, BAN H Y, SUN P C, LIU Y, LI C M, CHANG L P, XIE K C. Effect of preparation method on activity and sulfur resistance of nickel-based methanation catalysts[J]. J Taiyuan Univ Technol,2020,51(6):808−815.

    26. [26]

      ZHU C S, LI J F, ZHANG Q F. Monolithic Al-foam supported Pd catalyst Pd/AlOOH/Al-foam for catalytic combustion of methane[J]. Ind Catal,2021,29(01):28−37.

    27. [27]

      WANG B L, ZHANG J, ZHONG H X, WANG Z Y, WANG J, WANG H Z, LI D, PAN L W. Effect of Ce doping content on catalytic performance of supported Co/ZrO2 catalysts for combustion of methane[J]. Mod Chem Ind,2020,40(12):151−155.

    28. [28]

      LI C S, LI W Z, CHEN K, OGUNBIYI J T, ZHOU Z A, DUAN Q Y, XUE F Y. Highly active Pd catalysts supported on surface-modified cobalt-nickel mixed oxides for low temperature oxidation of lean methane[J]. Fuel,2020,279:118372.  doi: 10.1016/j.fuel.2020.118372

    29. [29]

      WANG D, ZHU S Y, YAN X L, LI R F. Complete oxidation of methane on different metals (iron, cobalt, nickel, palladium) supported on CeO2[J]. Appl Chem Ind,2019,48(12):2867−2871.

    30. [30]

      LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol,2018,46(5):615−624.  doi: 10.3969/j.issn.0253-2409.2018.05.015

    31. [31]

      MA J, LOU Y, CAI Y F, ZHAO Z Y, WANG L, ZHAN W C, GUO Y L, GUO Y. The relationship between chemical state of Pd species and catalytic activity of methane combustion on Pd/CeO2[J]. Catal Sci Technol,2018,8:2567−2577.  doi: 10.1039/C8CY00208H

    32. [32]

      LU Nan, WU Zhi-wei, LEI Li-jun, QIN Zhang-feng, ZHU Hua-qing, LUO Li, FAN Wei-bin, WANG Jian-guo. Catalytic combustion of lean methane over a core-shell structured Pd-Co3O4@SiO2 catalyst[J]. J Fuel Chem Technol,2015,43(9):1120−1127.  doi: 10.3969/j.issn.0253-2409.2015.09.015

    33. [33]

      HUANG F, WANG X D, LI L, LIU X, XU J M, HUANG C D, ZHANG T. Effect of magnesium substitution into Fe-based La-hexaaluminates on the activity for CH4 catalytic combustion[J]. Catal Sci Technol,2016,6(21):7860−7867.  doi: 10.1039/C6CY01491G

    34. [34]

      LI X Y, LIU Y X, DENG J G, ZHANG Y, XIE S H, ZHAO X T, WANG Z W, GUO G S, DAI H X. 3DOM LaMnAl11O19-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor[J]. Catal Today,2018,308:71−80.  doi: 10.1016/j.cattod.2017.07.024

    35. [35]

      LIU Sai, XIE Ya-qiong, JIN Li-ying, MA Bin, ZHENG Jian-dong. Preparation of Ni-doped Ca2FeNixCo1−xO6 and its catalytic properties for methane combustion[J]. Ind Catal,2019,27(2):35−38.  doi: 10.3969/j.issn.1008-1143.2019.02.004

    36. [36]

      ZHOU Mao-mao, WANG Pu, WU Qian, XU Zhuang, ZHENG Jian-dong. Preparation of LaMnxFe1−xO3 and catalytic properties for methane combustion[J]. Chin J Synth Chem,2018,26(9):691−694+698.

    37. [37]

      TAN X H, HAN N, CHEN H B, SU L, ZHANG C, LI Y. Investigation of perovskite BaCe1−xMnxO3-δ for methane combustion[J]. Ceram. Int.,2021,47:8762−8768.  doi: 10.1016/j.ceramint.2020.11.141

    38. [38]

      XIE Ya-qiong, JIN Li-ying, MA Bin, WANG Bo-yuan, GUO Ji, ZHENG Jian-dong. Preparation and catalytic activities of LaNi1−xCoxO3 catalysts for methane catalytic combustion[J]. Chem,2019,82(9):806−810.

    39. [39]

      CIUPARU D, LYUBOVSKY M R, AITMANl E, PFEFFERLE L D, DATYE A. Catalytic combustion of methane over palladium-based catalysts.[J]. Catal Rev Sci Eng,2002,44(4):593−649.  doi: 10.1081/CR-120015482

    40. [40]

      PERSSON K, ERSSN A, JANSSON K, FIERRO J L G, JARAS S G. Influence of molar ratio on Pd-Pt catalysts for methane combustion[J]. Catalysis,2006,243:14−24.  doi: 10.1016/j.jcat.2006.06.019

    41. [41]

      LIU Yu-xi, DENG Ji-guang, XIE Shao-hua, WANG Zhi-wei, DAI Hong-xing. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts[J]. Chin J Catal,2016,37(8):1193−1205.  doi: 10.1016/S1872-2067(16)62457-9

    42. [42]

      LIN Hong-xia, SUN Guang-hui, WU Jin-mo, LU Peng-fei, ZHOU Fan, LIU Xiao-yong, DAI Hong-xing. Application of loaded precious metal catalysts in the oxidation reaction of volatile organic compounds[J]. Ind Catal,2020,28(4):16−27.  doi: 10.3969/j.issn.1008-1143.2020.04.002

    43. [43]

      TIDAHY H L, HOSSENI M, SIFFERT S, COUSIN R, LAMONIER J F, ABOUKAIS A, SU B L, GIRAUDON J M, LECLERCQ G. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene[J]. Catal Today,2008,137(2-4):335−339.  doi: 10.1016/j.cattod.2007.09.008

    44. [44]

      WU Z X, DENG J G, XIE S H, YANG H G, ZHAO X T, ZHANG K F, LIN H X, DAI H X, GUO G S. Mesoporous Cr2O3-supported Au-Pd nanoparticles: High-performance catalysts for the oxidation of toluene[J]. Microporous Mesoporous Mater,2016,224:311−322.  doi: 10.1016/j.micromeso.2015.11.061

    45. [45]

      MATAM S K, NEWTON M A, WEIDENKAFF A, FERRI D. Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3[J]. Catal Today,2013,205:3−9.  doi: 10.1016/j.cattod.2012.10.009

    46. [46]

      DING Y Q, JIA Y Y, JIANG M X, GUO Y, GUO Y L, GUO Y, WANG L, KE Q P, HA M N, DAI S, ZHAN W C. Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion[J]. Chem Eng J,2021,416:129150.  doi: 10.1016/j.cej.2021.129150

    47. [47]

      CARGNELLO M, JAEN J J D, GARRIDO J C H, BAKHMUTSKY K, MONTIN T, GAMEZ J J C, GORTEG RJ, FORNASIERO P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science,2012,337:713−717.  doi: 10.1126/science.1222887

    48. [48]

      KYLHAMMAR L, NARLSSO P A, SKOGLUNDH M. Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts[J]. J Catal,2011,284:50−59.  doi: 10.1016/j.jcat.2011.08.018

    49. [49]

      CHEN J J, WU Y, HU W, QU P F, LIU X, YUAN R, ZHONG L, CHEN Y Q. Insights into the role of Pt on Pd catalyst stabilized by magnesia-alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability[J]. Mol Catal,2020,496:111185.  doi: 10.1016/j.mcat.2020.111185

    50. [50]

      BECK I E, BUKHTIYAROV V, PAKHARUKOV I Y, ZAIKOVSKY V, KRIVENTSOV V, PARMON V. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation[J]. J Catal,2009,268:60−67.  doi: 10.1016/j.jcat.2009.09.001

    51. [51]

      MIAO S J, DENG Y Q. Au-Pt/Co3O4 catalyst for methane combustion[J]. Appl Catal B: Environ,2001,31:L1−L4.  doi: 10.1016/S0926-3373(01)00122-9

    52. [52]

      WANG Y, HAMIDREZZA A, JASON S, MANDANA A, DAI H X, DENG J G, KONDOFRANCOIS A Z, ROSE A. High performance Au-Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion[J]. ACS Catal,2016,6(10):6935−6947.  doi: 10.1021/acscatal.6b01685

    53. [53]

      HAN Z, DAI L Y, LIU Y X, DENG J G, JING L, ZHANG Y X, ZHANG K F, ZHANG X, HOU Z Q, PEI W B, DAI H X. AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion[J]. Catal Today,2021,376:134−143.  doi: 10.1016/j.cattod.2020.06.068

    54. [54]

      LI Shi-jie, HUANG Hui-juan, WEN Shi-tao, MA Jian-feng, LIU Xing-e. Research progress of supported noble metal catalysts in catalytic oxidation of formaldehyde[J]. Mater Rep,2020,34(S1):400−407.

    55. [55]

      LU Jie. Research progress on catalytic oxidation of methane by precious metal complexes[J]. Guangzhou Chem Ind,2020,48(15):51−53+64.  doi: 10.3969/j.issn.1001-9677.2020.15.018

    56. [56]

      MENG Ling-quan, CHEN Xin, XU Zu-wei, ZHAO Hai-bo. Sintering behaviors of Cu-Based catalysts via flame spray pyrolysis in methane catalytic combustion[J]. J Combust Sci Technol,2019,25(5):414−422.

    57. [57]

      LIANG Cheng-si, WANG Na-feng, LIU Chen-yang, ZONG Yi-chen, LI Shui-qing, YAO Qiang. Flame synthesis and methane catalytic characterization of copper-based inexpensive catalysts[J]. J Eng Thermophys,2017,38(4):881−884.

    58. [58]

      AGUILA G, GRACIA F, CORTES J, ARAYA P. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts[J]. Appl Catal B: Environ,2008,77(3/4):325−338.

    59. [59]

      POPESCU I, TANCHOUX N, TICHIT D, MARCU I C. Total oxidation of methane over supported CuO: Influence of the MgxAlyO support[J]. Appl Catal A: Gen,2017,538:81−90.  doi: 10.1016/j.apcata.2017.03.012

    60. [60]

      PARK P W, LEDFORD J S. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane[J]. Appl Catal B: Environ,1998,15(3/4):221−231.  doi: 10.1016/S0926-3373(98)80008-8

    61. [61]

      XU Feng, LI Fan, TIAN Yao-yao, BI Fang-qiang, ZHU Li-hua. Effect of Cu loading on performance of CuO/γ-Al2O3 catalyst in combustion of low-concentration methane[J]. Appl Chem Ind,2018,47(9):1858−1861.  doi: 10.3969/j.issn.1671-3206.2018.09.014

    62. [62]

      ZHENG Y, YU Y, ZHOU H, HUANG W, PU Z. Combustion of lean methane over Co3O4 catalysts prepared with different cobalt precursors[J]. RSC Adv,2020,10(8):4490−4498.  doi: 10.1039/C9RA09544F

    63. [63]

      SARAH C P, ERIN M M, GREGORY A C, MARJORIE A L. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water[J]. J Mol Catal A: Chem,2008,281:49−58.  doi: 10.1016/j.molcata.2007.08.023

    64. [64]

      BAI Wei, LI Xiu-jie, PENG Zhan-lu. Effect of Co doping on the catalytic performance of CuO/CeO2-Co3O4 for preferential oxidation of CO[J]. Chem Eng Oil Gas,2021,50(2):48−52.  doi: 10.3969/j.issn.1007-3426.2021.02.008

    65. [65]

      CHEN Z P, WANG S, LIU W G, GAO X H, GAO D N, WANG M Z, WANG S D. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A: Gen,2016,525:94−102.  doi: 10.1016/j.apcata.2016.07.009

    66. [66]

      YU Q, LIU C X, LI X Y, WANG C, WANG X X, CAO H J, ZHAO M C, WU G L, SU W G, MA T T, ZHANG J, BAO H L, WANG J Q, DING B, HE M X, YAMAUCHI Y, ZHAO X S. N-doping activated defective Co3O4 as an efficient catalyst for low-temperature methane oxidation[J]. Appl Catal B: Environ,2020,269:118757.  doi: 10.1016/j.apcatb.2020.118757

    67. [67]

      FENG Z J, DU C, CHEN Y J, LANG Y K, ZHAO Y K, CHO K, CHEN R, SHAN B. Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion[J]. Catal Sci Technol,2018,8(15):3785−3794.  doi: 10.1039/C8CY00897C

    68. [68]

      APOSTOLOV A T, APOSTOLOV I N, WESSELINOWA J M. Co, Fe and Ni ion doped CeO2 nanoparticles for application in magnetic hyperthermia[J]. Phys E,2020,124:114364.  doi: 10.1016/j.physe.2020.114364

    69. [69]

      SANCHEZ J J, LOPEZ H M, HERNANDEZ G J C, BLANCO G, CAUQUI M A, RODRIGUEZ I J M, PEREZ O J A, CALVINO J J, YESTE M P. An atomically efficient, highly stable and redox active Ce0.5Tb0.5Ox (3% mol)/MgO catalyst for total oxidation of methane[J]. J Mater Chem A,2019,7(15):8993−9003.  doi: 10.1039/C8TA11672E

    70. [70]

      STOIAN M, ROGE V, LAZAR L, MAURER T, VEDRINE J C, MARCU I C, FECHETE I. Total oxidation of methane on oxide and mixed oxide ceria-containing catalysts[J]. Catalysis,2021,11(4):427.

    71. [71]

      SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1−XNiXO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A: Gen,2003,246(1):1−9.  doi: 10.1016/S0926-860X(02)00659-2

    72. [72]

      ZHU Yan-yan, YUE Zong-yang, BIAN Wen, LIU Rui-lin, MA Xiao-xun, WANG Xiao-dong. The structure of hexaaluminate and application in high-temperature reaction[J]. Prog Chem,2018,30(12):1992−2002.

    73. [73]

      XU P, ZHANG X, ZHAO X T, YANG J, HOU Z Q, BAI L, CHANG H Q, LIU Y X, DENG J G, GUO G S, DAI H X, AU C T. Preparation, characterization, and catalytic performance of Pd Pt/3DOM LaMnAl11O19 for the combustion of methane[J]. Appl Catal A: Gen,2018,562:284−293.  doi: 10.1016/j.apcata.2018.05.022

    74. [74]

      ZHANG Ya-ping. Research on combustion performance of metal substituted hexaaluminate catalyzed methane[J]. Adv Fine Petrochem,2016,17(6):43−45+50.  doi: 10.3969/j.issn.1009-8348.2016.06.013

    75. [75]

      YURANOV I, MOECKLI P, SUVOROVA E, BUFFAT P, KIWI-MINSKER L. Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas[J]. J Mol Catal A: Chem,2003,192(1/2):239−251.  doi: 10.1016/S1381-1169(02)00441-7

    76. [76]

      MASATO M, KOICHI E, HIROMICHI A. Analytical electron microscope analysis of the formation of BaO·6Al2O3[J]. J Am Ceram Soc,1988,71:1142−1147.  doi: 10.1111/j.1151-2916.1988.tb05806.x

    77. [77]

      ZHU Wen-juan, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng. Spinel catalysts: Preparation technology and applications in catalytic purification of gaseous pollutants[J]. Mater Rep,2020,34(3):50−61.

    78. [78]

      MIHAI M A, CULITA D C, ATKINSON I, PAPA F, POPESCU I, MARCU I C. Unraveling mechanistic aspects of the total oxidation of methane over Mn, Ni and Cu spinel cobaltites via in situ electrical conductivity measurements[J]. Appl Catal A: Gen,2021,611:117901.  doi: 10.1016/j.apcata.2020.117901

    79. [79]

      YANG X, GAO Q, ZHAO Z, GUO Y, GUO Y, WANG L, WANG Y, ZHAN W. Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion[J]. Appl Catal B: Environ,2018,239:373−382.  doi: 10.1016/j.apcatb.2018.08.038

    80. [80]

      ZHU J J, LI H L, ZHONG L Y, XIAO P, XU X L, YANG X G, ZHAO Z, LI J L. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catal,2014,4(9):2917−2940.  doi: 10.1021/cs500606g

    81. [81]

      WANG Q Q, MA L P, WANG L C, WANG D D. Mechanisms for enhanced catalytic performance for NO oxidation over La2CoMnO6 double perovskite by A-site or B-site doping: Effects of the B-site ionic magnetic moments[J]. Chem Eng J,2019,372:728−741.  doi: 10.1016/j.cej.2019.04.178

    82. [82]

      YANG J, GUO Y B. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane[J]. Chin Chem Lett,2018,29(2):252−260.  doi: 10.1016/j.cclet.2017.09.013

    83. [83]

      WANG S, XU X L, ZHU J J, TANG D H, ZHAO Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. J Rare Earths,2019,37(9):970−977.  doi: 10.1016/j.jre.2018.11.011

    84. [84]

      WANG Sai-fei, WANG Man, QIAN Heng-li, LI Li-qi, DUAN Er-hong. Preparation of hierarchical pore La1−xSrxCoO3 catalysts and catalytic oxidation of methane over it[J]. Nat Gas Ind,2017,42(6):64−68.

    85. [85]

      ZHANG C X, ZHAO P Y, LIU S X, YU K. Three-dimensionally ordered macroporous perovskite materials for environmental applications[J]. Chin J Catal,2019,40(09):1324−1338.  doi: 10.1016/S1872-2067(19)63341-3

    86. [86]

      ARANDIYAN H, SCOTT J, WANG Y, DAI H X, SUN H Y, AMAI R. Meso-molding three-dimensional macro-porous perovskites: a new approach to generate high-performance nanohybrid catalysts[J]. ACS Appl Mater Inter,2016,8:2457−2463.  doi: 10.1021/acsami.5b11050

    87. [87]

      ZHANG Wei, TANG Yun-hao, YIN Yan-shan, GONG Wei-cheng, SONG Jian, MA Ying, RUAN Min, XU Hui-fang, CHEN Dong-lin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst[J]. Chem Ind Eng Prog,2021,40(3):1425−1437.

    88. [88]

      SANTOS S M, FRETY R, LISI L, CIMINO S, TEIXEIRA B S. LaNi1−xCoxO3 perovskites for methane combustion by chemical looping[J]. Fuel,2021,292:120187.  doi: 10.1016/j.fuel.2021.120187

    89. [89]

      GAO X J, JIN Z H, HU R S, HU J N, BAI Y Q, WANG P, ZHANG J, ZHAO C X. Double perovskite anti-supported rare earth oxide catalyst CeO2/La2CoFeO6 for efficient ventilation air methane combustion[J]. J Rare Earths,2021,39(4):398−408.  doi: 10.1016/j.jre.2020.07.022

    90. [90]

      DING Y, WANG S, ZHANG L, CHEN Z P, WANG M Z, WANG S D. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane[J]. Catal Commun,2017,97:88−92.  doi: 10.1016/j.catcom.2017.04.022

    91. [91]

      WANG M, WANG F, MA J P, LI M R, ZHANG Z, WANG Y H, ZHANG X C, XU J. The investigations on crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in liquid phase[J]. Chem Commun,2014,50:292−294.  doi: 10.1039/C3CC46180G

    92. [92]

      RUI S, STEPHANOPOULO F M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed,2008,120:2926−2929.  doi: 10.1002/ange.200705828

    93. [93]

      JING Z Y, LI H Y, JIANG Z D. The chemical interaction of support and active phase in sintering resistant La0.8Ca0.2FeO3 perovskite catalysts[J]. Fuel,2019,243:322−331.  doi: 10.1016/j.fuel.2019.01.124

    94. [94]

      BASHAN V, UST Y. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation[J]. Int J Energy Res,2019,43:1−35.  doi: 10.1002/er.4139

    95. [95]

      YANG Z, LIU J, ZHANG L, ZHENG S, GUO M, YAN Y. Catalytic combustion of low-concentration coal bed methane over CuO/γ-Al2O3 catalyst: effect of SO2[J]. RSC Adv,2014,4:39394−39399.  doi: 10.1039/C4RA05334F

    96. [96]

      ROSSO I, GARRONE E, GEOBALDO F, ONIDA B, SARACCO G, SPECCHIA V. Sulphur poisoning of LaMn1−xMgxO3-yMgO catalysts for methane combustion[J]. Appl Catal B: Environ,2001,34(1):29−41.

    97. [97]

      LOTT P, ECK M, DORONKIN D E, ZIMINA A, TISCHER S, POPESCU R, BELIN S, BRIOIS V, CASAPU M, GRUNWALDT J D, DEUTSCHMANN O. Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration[J]. Appl Catal B: Environ,2020,278:119244.  doi: 10.1016/j.apcatb.2020.119244

    98. [98]

      ROSSO I, SARACCO G, SPECCHIA V, GARRONE E. Sulphur poisoning of LaCr0.5−xMnxMg0.5O3·yMgO catalysts for methane combustion[J]. Appl Catal B: Environ,2003,40(3):195−205.

    99. [99]

      LI T T, SUN W, ZHOU Z H, XIE T Y, CAO L M, YANG J. Di-metal-doped sulfur resisting perovskite catalysts for highly efficient H2-SCR of NO[J]. Environ Sci Pollut Res,2018,25(25):25504−25514.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(0)
  • Abstract views(2771)
  • HTML views(985)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return