Citation: Qiang-qiang CHEN, Yu GUO, Hong-mei WU. Preparation of modified β zeolite with phosphorus for catalytic alkylation of C9 aromatics with propylene[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 98-108. doi: 10.19906/j.cnki.JFCT.2021074 shu

Preparation of modified β zeolite with phosphorus for catalytic alkylation of C9 aromatics with propylene

  • Corresponding author: Yu GUO, guoyu@lnut.edu.cn
  • Received Date: 8 May 2021
    Revised Date: 16 July 2021

Figures(14)

  • To investigate the catalytic properties of β zeolite for catalytic alkylation of C9 aromatics with propylene, β zeolites modified with phosphorus were prepared by using impregnation method. The modified β catalysts with different loading amount of phosphorus were characterized by XRD, SEM, EDX, MAS NMR, Py-IR, N2 adsorption-desorption, and NH3-TPD. The results showed that the morphology and crystal structure of the β zeolite catalysts did not change obviously after modification with phosphorus. However, the specific surface area and the surface Si/Al mass ratio of the β zeolite decreased with the increase of amount of phosphorus. It was proved that the interaction between the phosphorus and β zeolite could affect the acid strength distribution of β zeolite and the catalytic performance of alkylation of C9 aromatics. In comparison with β zeolite, the β zeolite modified with 0.5% phosphorus (β-0.5P) had good catalytic performance in alkylation reaction of C9 aromatics. The ratio of C12+ aromatics in the alkylation products was up to 17%, and the value of m1,3,5-TMB/mC9 was increased by 5.3%. The β-0.5P catalytic activity showed stable after reaction for 10 h. However, when the loading amount of phosphorus on β zeolite was too high, the alkylation activity of the catalyst decreased and the isomerization and disproportionation performance of the catalyst increased.
  • 加载中
    1. [1]

      LU Xuan. Technological advance on comprehensive utilization of C9 heavy aromatics[J]. Chem Ind,2010,28(12):30−33.  doi: 10.3969/j.issn.1673-9647.2010.12.007

    2. [2]

      XIAO Wen, ZHOU Da-jun. Experimental study on manufacturing high purity mesitylene from C9 arene cut of reforming[J]. Acta Pet Sin (Pet Process Sect),2010,26(S1):93−97.

    3. [3]

      LIU Jie, LIU Gang. Manufacture of high purity mesitylene from C9 aromatics mixture[J]. Technol Dev Chem Ind,2004,33(6):48−49+42.  doi: 10.3969/j.issn.1671-9905.2004.06.015

    4. [4]

      LIU Jian, LIU Heng-yuan, TAN Bin, LI Ping, XU Jian-hong. Research progress in long chain catalytic alkylation of aromatic hydrocarbons[J]. Chem Ind Eng Prog (China),2020,39(5):1744−1755.

    5. [5]

      GUO Wen-di, LIU Zhi-chang, HUANG Chong-pin, LI Qiang. Separation 1,3,5-trimethylbenzene through alkylation catalyzed by ionic liquid[C]//Proceedings of the 9th National Chemical Technology Annual Conference. Beijing: China Petrochemical Press, 2005: 1078–1083.

    6. [6]

      CHEN Ban-sheng, ZHOU Yu-ming, ZHANG Yi-wei. Study on kaolin supported phosphor-tungstic acid catalyst for mesitylene preparation by alkylation of C9 aromatics[J]. Pet Ref Chem Ind,2006,37(4):28−31.  doi: 10.3969/j.issn.1005-2399.2006.04.007

    7. [7]

      GAO Zi, HE Ming-yuan, DAI Yi-yun. Catalytic Separation of Zeolite[M]. Beijing: China Petrochemical Press, 1999: 295–306.

    8. [8]

      WANG Wen-nian, YUAN De-lin, LI Hao, REN Shen-yong, GUO Qiao-xia, SHEN Bao-jian. Regulation of structure and catalytic performance of β-zeolite by post treatments[J]. CIESC J,2016,67(8):3429−3435.

    9. [9]

      BAI G, DOU H, QIU M, FAN X, FEI H, NIU L, MA Z. Friedel-Crafts hydroxyalkylation of anisole over oxalic acid modified Hβ zeolite[J]. Catal Lett,2010,138(3/4):187−192.  doi: 10.1007/s10562-010-0387-z

    10. [10]

      BELLUSSI G, PAZZUEONI G, PEREGO C, GIROTTI G, TERZONI G. Liquid phase alkylation of benzene with light olefins catalyzed by β-zeolites[J]. J Catal,1995,157:227−234.  doi: 10.1006/jcat.1995.1283

    11. [11]

      CHEN Qiang-qiang, LI Jie. Catalytic performance of β zeolite on extraction of mesitylene from C9 aromatics alkylation[J]. Spec Petrochem,2010,27(1):12−16.  doi: 10.3969/j.issn.1003-9384.2010.01.004

    12. [12]

      YANG Ping, PAN Lu-rang, LI He-xuan. Study of the acidity of β zeolite and the alkylation of benzene with propene[J]. J Fuel Chem Technol,1990,18(1):16−23.

    13. [13]

      WANG H L, XIN W Y. Surface acidity of H-beta and its catalytic activity for alkylation of benzene with propylene[J]. Catal Lett,2001,76(3):225−229.

    14. [14]

      RÖGER H P, MÖLLER K P, O'CONNOR C T. The transformation of 1,2,4-trimethylbenzene A probe reaction to monitor external surface modifications of HZSM-5?[J]. Microporous Mater,1997,8(3/4):151−157.

    15. [15]

      XIE Zai-ku, CHEN Qing-ling, ZHANG Cheng-fang, LIU Hong-xing, LU Xian. Disproportionation of Toluene and Transalkylation of C9 Aromatics over Hβ Zeolite[J]. J East China Univ Sci Technol,2000,21(1):47−51.

    16. [16]

      ČEJKA J, KOTRLA J, KREJČÍ A. Disproportionation of trimethyl benzenes over large pore zeolites: Catalytic and adsorption study[J]. Appl Catal A: Gen,2004,277(1):191−199.

    17. [17]

      LIU Hai-yan, SHI Wei, REN Dong-mei, LI Ping, SUN Wen-dong. Hydrothermal synthesis of zeolite and its application in isobutane/butene alkylation[J]. J Mol Sci,2005,21(3):29−35.  doi: 10.3969/j.issn.1000-9035.2005.03.007

    18. [18]

      SONG Xiang-mei, LI Ying-xia, CHEN Biao-hua, LI Cheng-yue. Acidity and catalytic properties for benzene alkylation with propylene of β zeolite modified with phosphorus[J]. J Petrochem Univ,2004,17(4):34−37.  doi: 10.3969/j.issn.1006-396X.2004.04.010

    19. [19]

      CHAO Hui-xia, LUO Xiang-sheng, ZHANG Feng-mei. Alkylation of benzene with ethylene catalyzed by zeolite beta modified by phosphorus at normal and high temperature[J]. Pet Ref Chem Ind,2017,48(4):83−86.  doi: 10.3969/j.issn.1005-2399.2017.04.018

    20. [20]

      WANG Yuan-yuan, SONG Hua, SUN Xing-long, YUAN Dan-dan, WANG Xue-qin. Phosphprus modified Hβ zeolites and the catalytic perpormance for alkylation of toluene with tert-butyl alcohol[J]. J Northeast Pet Univ,2020,44(4):85−90.  doi: 10.3969/j.issn.2095-4107.2020.04.012

    21. [21]

      TREACY M M J, HIGGINS J B. Collection of Simulated XRD Powder Patterns for Zeolites[M]. 5nd ed. Oxford, UK: Elsevier Science, 2007: 82–83.

    22. [22]

      XIONG Y, CHEN W, ZENG A. Optimization for catalytic performances of Hβ zeolite in the acylation of 2-methylfuran by surface modification and solvents effect[J]. Res Chem Intermed,2017,43(3):1557−1574.  doi: 10.1007/s11164-016-2715-4

    23. [23]

      ZHAO Pei-xia, LIU Jing, ZANG Chun-yong. Effects of ammonium salts modification on acidity of β molecular sieve and its catalytic performances in diisopropylbenzene isomerization[J]. Chin Petrochem Technol,2005,34(6):527−531.  doi: 10.3321/j.issn:1000-8144.2005.06.005

    24. [24]

      YANG Chun, XU Qin-hua. States and assignment of aluminium in zeolite β[J]. Acta Phys-Chim Sin,1998,14(2):169−173.  doi: 10.3866/PKU.WHXB19980214

    25. [25]

      XIE Zai-ku, CHEN Qing-ling, ZHANG Cheng-fang, BAO Jia-qing, CAO Yu-hua, YANG Yi-qing. Study on the surface acid properties of Hβ zeolite[J]. Chin J Catal,2000,21(1):47−51.  doi: 10.3321/j.issn:0253-9837.2000.01.014

    26. [26]

      DING J, WANG M, PENG L, XUE N H, WANG Y M, HE M Y. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Appl Catal A: Gen,2015,503:147−155.  doi: 10.1016/j.apcata.2015.07.011

    27. [27]

      SONG Shou-qiang, LI Li-sheng, LI Ming-gang, ZHANG Feng-mei, SHU Xing-tian. Effect and mechanism of phosphorus modification on H-SAPO-34 molecular sieves[J]. Acta Pet Sin (Pet Process Sect),2014,30(3):398−407.

    28. [28]

      JANSSEN A H, KOSTER A J, DE JONG K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J]. Angew Chem Int Ed,2001,40(6):1102−1104.  doi: 10.1002/1521-3773(20010316)40:6<1102::AID-ANIE11020>3.0.CO;2-6

    29. [29]

      WANG Cheng-qiang, OUYANG Ying, LUO Yi-bin. Effects of phosphorus modification on the stability of β zeolite with and without template removal[J]. Acta Pet Sin (Pet Process Sect),2018,34(6):1211−1216.

    30. [30]

      LIU J X, HE N, LIU C Y, WANG G R, XIN Q, GUO H C. Engineering the porosity and acidity of H-Beta zeolite by dealumination for the production of 2-ethylanthraquinone via 2-(4′-ethylbenzoyl)benzoic acid dehydration[J]. RSC Adv,2018,8(18):9731−9740.  doi: 10.1039/C7RA13576A

    31. [31]

      WEI Qiang, ZHOU Ya-song, HUANG Mei-mei, ZHANG Tao, WANG Yan. Synthesis and characterization of phosphorous modified Y zeolite[J]. Acta Pet Sin (Pet Process Sect),2011,27(2):275−279.

    32. [32]

      LI Man-ni, WU Rui-feng, ZHANG Jing-lin. Composition and structure characterization of phosphorus–modified clinoptilolite[J]. Chin Petrochem Technol,2002,31(8):656−661.  doi: 10.3321/j.issn:1000-8144.2002.08.015

    33. [33]

      DENG De-bin, MA Li-jing, LIU Xiu-ying, Li Xuan-wen. Study of the Realumination of H zeolite framework by infrared spectroscopy[J]. Acta Phys Chim Sin,2000,16(2):162−165.  doi: 10.3866/PKU.WHXB20000212

    34. [34]

      ZHANG Jian-ye, LI Xuan-wen, LIU Xingyun. Study on the framework stability and surface acidity of Hβ zeolite by infrared spectroscopy[J]. Acta Phys Chim Sin,1999,15(12):37−42.

    35. [35]

      HUI Yu, LIU Jin-ling, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Discrimination and regulation of the acidic sites of Hβ zeolite with citric acid treatment[J]. J Petrochem Univ,2020,33(3):14−20.  doi: 10.3969/j.issn.1006-396X.2020.03.003

    36. [36]

      MITRAN G, CHEN S J, Dolge K L, HUANG W Y, SEO D K. Ketonic decarboxylation and esterification of propionic acid over beta zeolites[J]. Microporous Mesoporous Mater,2021,310.

    37. [37]

      SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to determination of surface area and porosity[J]. Pure Appl Chem,1985,57(4):603−619.  doi: 10.1351/pac198557040603

    38. [38]

      YANG L J, SONG Z Y, YU Y M, L J, XIA D H. Bimetallic bifunctional Pt-NiP/Hβ as a novel and highly efcient catalyst for n-hexane isomerization[J]. Catal Surv from Asia,2020,24(2):104−114.  doi: 10.1007/s10563-020-09295-4

    39. [39]

      KONG De-cun, SHI Li, WANG Xin, MENG Xuan, LIU Nai-wang. Study of USY molecular sieve modified by ammonium fluoride and its catalytic deolefin performance[J]. Pet Ref Chem Ind,2020,51(6):6−12.  doi: 10.3969/j.issn.1005-2399.2020.06.002

    40. [40]

      SU Wei, HAN Na, CHEN Zheng-li, SHEN Jian, WANG Lei, LIU Shu, YANG Li-na. Modification of Hβ molecular sieve and its catalytic performance in benzylation[J]. Acta Pet Sin (Pet Process Sect),2020,36(1):38−44.

    41. [41]

      CHEN Shang-bin, ZHU Yan-ming, WANG Hong-yan, LIU Hong-lin, WEI Wei, FANG Jun-hua. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. J China Coal Soc,2012,37(3):438−444.

    42. [42]

      ZHAO Yin, WANG Hai-yan, WEI Min, MA Jun. Etherification of FCC light gasoline over P-loaded zeolite β catalyst[J]. J Fuel Chem Technol,2004,32(2):225−229.  doi: 10.3969/j.issn.0253-2409.2004.02.020

    43. [43]

      SHEN Zhi-hong, PAN Hui-fang, XU Chun-sheng, ZHAO Ye-wen, ZOU Xiao-feng. Effect of phosphate on the acidity and coking of hydrocarbon catalyst[J]. J China Univ Pet: Nat Sci,1994,18(2):86−89.

    44. [44]

      WEI Z H, XIA T F, LIU M H, CAO Q S, XU Y R, ZHU K K, ZHU X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front Chem Sci Eng,2015,9(4):450−460.  doi: 10.1007/s11705-015-1542-2

    45. [45]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141:347−354.  doi: 10.1006/jcat.1993.1145

    46. [46]

      CHENG Xiao-jing, WANG Xiang-sheng. Reactions of C9 aromatics over zeolite catalysts with different structures[J]. Chin Petrochem Technol,2013,42(1):24−29.  doi: 10.3969/j.issn.1000-8144.2013.01.005

    47. [47]

      LIU Hong-xing, XIE Zai-ku, ZHANG Cheng-fang, CHEN Qing-ling. Chemical equilibrium of toluene disproportionation and trimethylbenzene transalkylatio[J]. Chin Petrochem Technol,2003,32(1):28−32.  doi: 10.3321/j.issn:1000-8144.2003.01.008

    48. [48]

      XIAO Huan, ZHANG Wei-min, MA Jing-hong, LI Rui-feng. 1,3,5-trimethylbenzene transformation over zeolite catalyst[J]. Acta Pet Sin (Pet Process Sect),2019,35(2):369−375.

    49. [49]

      LI Meng-meng, DONG Xiu-qin, ZHANG Min-hua. DFT study on the structural and acidity of P-ZSM-5[J]. Comput Appl Chem,2012,29(2):245−248.  doi: 10.3969/j.issn.1001-4160.2012.02.028

    50. [50]

      TIAN Ling, LI Jian-wei, LI Ying-xia, CHEN Biao-hua. Synthesis of dodecylbenzene with benzene and 1-dodecene over MCM-22 zeolite modified with phosphorus[J]. Chin J Catal,2008,29(9):889−894.  doi: 10.3321/j.issn:0253-9837.2008.09.012

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    14. [14]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(1200)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return