Citation: Xin HUANG, Xi JIAO, Xiao-bo WANG, Ning ZHAO. Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 44-53. doi: 10.19906/j.cnki.JFCT.2021073 shu

Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)

  • Corresponding author: Xiao-bo WANG, wxbtyut@163.com
  • Received Date: 11 June 2021
    Revised Date: 16 July 2021

Figures(2)

  • Direct, nonoxidative conversion of methane towards olefins/aromatics is a hot topic in the background of “carbon peak, carbon neutrality”, owing to zero CO2 emissions, high carbon atom utilization efficiency and hydrogen production. In the present paper, the advances of methane dehydroaromatization (MDA) and direct nonoxidative conversion of methane to olefins, aromatics, and hydrogen (MTOAH) are reviewed, based on our research works and the publications from 2018 to 2021. The determination of active sites, reaction intermediates, reaction mechanism, catalyst modification and improvement were considered. Finally, the future prospect was given for the direct nonoxidative conversion of methane to olefins/aromatics.
  • 加载中
    1. [1]

      ZHOU Shu-hui, WANG Jun, LIANG Yan. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Nat Gas Ind,2021,41(2):171−182.  doi: 10.3787/j.issn.1000-0976.2021.02.02(

    2. [2]

      BAO Xin-he. Nano confinement and catalytic conversion of energy molecules[J]. Chin Sci Bull,2018,63(14):1265−1274.  doi: 10.1360/N972018-00441

    3. [3]

      HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol,2018,46(9):1087−1100.  doi: 10.3969/j.issn.0253-2409.2018.09.008

    4. [4]

      UPHAM C, AGARWAL V, KHECHFE A, SNODGRASS Z R, GORDON M J, METIU H, MCFARLAND E W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science,2017,358:917−921.  doi: 10.1126/science.aao5023

    5. [5]

      DÍZA-URRUTIA C, OTT T. Activation of methane to CH3+: A selective industrial route to methanesulfonic acid[J]. Science,2019,363:1326−1329.  doi: 10.1126/science.aav0177

    6. [6]

      SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S, YAVUZ C. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781.  doi: 10.1126/science.aav2412

    7. [7]

      JIN Z, WANG L, ZUIDEMA E, MONDAL K, ZHANG M, ZHANG J, WANG C, MENG X, YANG H, MESTERS C, XIAO F. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science,2020,367:193−197.  doi: 10.1126/science.aaw1108

    8. [8]

      WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett,1993,21:35−41.  doi: 10.1007/BF00767368

    9. [9]

      GUO X, FANG G, LI G, MA H, FAN H, YU L, MA C, WU X, DENG D, WEI M, TAN D, SI R, ZHANG S, LI J, SUN L, TANG Z, PAN X, BAO X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science,2014,344:616−619.  doi: 10.1126/science.1253150

    10. [10]

      VOLLMER I, YARULINA I, KAPTEIJN F, GASCON J. Progress in developing a structure-activity relationship for the direct aromatization of methane[J]. ChemCatChem,2019,11:39−52.  doi: 10.1002/cctc.201800880

    11. [11]

      SCHWACH P, PAN X, BAO X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chem Rev,2017,117:8497−8520.  doi: 10.1021/acs.chemrev.6b00715

    12. [12]

      KOSINOV N, HENSEN E. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Adv Mater,2020,2002565.

    13. [13]

      XU Y, BAO X, LIN L. Direct conversion of methane under nonoxidative conditions[J]. J Catal,2003,216:386−395.  doi: 10.1016/S0021-9517(02)00124-0

    14. [14]

      MA S, GUO X, ZHAO L, SCOTT S, BAO X. Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology[J]. J Energy Chem,2013,22:1−20.  doi: 10.1016/S2095-4956(13)60001-7

    15. [15]

      ISMAGILOV Z, MATUS E, TSIKOZA L. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives[J]. Energy Environ Sci,2008,1:526−541.  doi: 10.1039/b810981h

    16. [16]

      SPIVEY J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev,2014,43:792−803.  doi: 10.1039/C3CS60259A

    17. [17]

      KIANI D, SOURAV S, TANG Y, BALTRUSAITIS J, WACHS I. Methane activation by ZSM-5-supported transition metal centers[J]. Chem Soc Rev,2021,50:1251−1268.  doi: 10.1039/D0CS01016B

    18. [18]

      MENON U, RAHMAN M, KHATIB S. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts[J]. Appl Catal A: Gen,2020,608:117870.  doi: 10.1016/j.apcata.2020.117870

    19. [19]

      XU Y, YUAN X, CHEM M, DONG A, LIU B, JIANG F, YANG S, LIU X. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient nonoxidative methane dehydroaromatization[J]. J Catal,2021,396:224−241.  doi: 10.1016/j.jcat.2021.02.028

    20. [20]

      XU Y, CHEM M, WANG T, LIU B, JIANG F, LIU X. Probing cobalt localization of HZSM-5 for efficient methane dehydroaromatization catalysts[J]. J Catal,2020,387:102−118.  doi: 10.1016/j.jcat.2020.04.021

    21. [21]

      XU Y, CHEM M, LIU B, JIANG F, LIU X. CH4 conversion over Ni/HZSM-5 catalyst in the absence of oxygen: decomposition or dehydroaromatization[J]. Chem Commun,2020,56:4396−4399.  doi: 10.1039/D0CC01345E

    22. [22]

      THAKUR R, HOFFMAN M, VAHIDMOHAMMAD A, SMITH J, CHI M, TATARCHUK B, BEIDAGHI M, CARRERO C. Multilayered two-dimensional V2CTx MXene for methane dehydroaromatization[J]. ChemCatChem,2020,12:3639−3643.  doi: 10.1002/cctc.201902366

    23. [23]

      DUTTA K, LI L, GUPTA P, GURIERREZ D, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun,2018,108:16−19.

    24. [24]

      KANITKAR S, ABEDIN M, BHATTAR S, SPIVEY J. Methane dehydroaromatization over molybdenum supported on sulfated zirconia catalysts[J]. Appl Catal A: Gen,2019,575:25−37.  doi: 10.1016/j.apcata.2019.01.013

    25. [25]

      LEZCAO-GONZÁLEZ I, OORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S, WECKHUYSEN B, BEALE A. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods[J]. Angew Chem Int Ed,2016,55:5215−5219.  doi: 10.1002/anie.201601357

    26. [26]

      AGOTE-ARÁN M, KRONER A, ISLAM H, SŁAWIŃSKI W, WRAGG D, LEZCAO-GONZÁLEZ I, BEALE A. Determination of molybdenum species evolution during non-oxidative dehydroaromatization of methane and its implications for catalytic performance[J]. ChemCatChem,2019,11:473−480.  doi: 10.1002/cctc.201801299

    27. [27]

      AGOTE-ARÁN M, FLETCHER R, BRICENO M, KRONER A, SAZANOVICH I, SLATER B, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Implications of the molybdenum coordination environment in MFI zeolites on methane dehydroaromatization performance[J]. ChemCatChem,2020,12:294−304.  doi: 10.1002/cctc.201901166

    28. [28]

      AGOTE-ARÁN M, KRONER A, WRAGG D, SŁAWIŃSKI W, BRICENO M, ISLAM H, SAZANOVICH I, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Understanding the deactivation phenomena of small-pore Mo/H-SSZ-13 during methane dehydroaromatization[J]. Molecules,2020,25:5048.  doi: 10.3390/molecules25215048

    29. [29]

      KOSINOV N, WIJPKEMA A, USLAMIN E, ROHLING R, COUMANS F, MEZARI B, PARASTAEV A, PORYVAEV A, FEDIN M, PIDKO E, HENSEN E. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed,2018,57:1016−1020.  doi: 10.1002/anie.201711098

    30. [30]

      VOLLMER I, KOSINOV N, SZÉCSÉNYI Á, LI G, YARULINA I, ABOU-HAMAD E, GURINOV A, OULD-CHIKH S, AGUILAR-TAPIA A, HAZEMANN J, PIDKO E, HENSEN E, KAPTEIJN F, GASCON J. A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation[J]. J Catal,2019,370:321−331.  doi: 10.1016/j.jcat.2019.01.013

    31. [31]

      LIU L, WANG N, ZHU C, LIU X, ZHU Y, GUO P, ALFILFIL L, DONG X, ZHANG D, HAN Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angew Chem Int Ed,2020,132:829−835.  doi: 10.1002/ange.201909834

    32. [32]

      KONNOV S, DUBRAY F, CLATWORTHY E, KOUVATAS C, GILSON J, DATH J, MINOUX D, AQUINO C, VALTCHEV V, MOLDOVAN S, KONETI S, NESTERENKO N, MINTOVA S. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angew Chem Int Ed,2020,59:19553−19560.  doi: 10.1002/anie.202006524

    33. [33]

      WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal,1996,3:289−297.  doi: 10.1007/BF02113855

    34. [34]

      VOLLMER I, ABOU-HAMAD E, GASCON J, KAPTEIJN F. Aromatization of ethylene-main intermediate for MDA[J]. ChemCatChem,2020,12:544−549.  doi: 10.1002/cctc.201901655

    35. [35]

      MÉRIAUDEAU P, TIEP L, HA V, NACCACHE C, SZABO G. Aromatization of methane over Mo/H-ZSM-5 catalyst: on the possible reaction intermediates[J]. J Mol Catal A: Chem,1999,144:469−471.  doi: 10.1016/S1381-1169(99)00050-3

    36. [36]

      MÉRIAUDEAU P, HA V, TIEP L. Methane aromatization over Mo/H-ZSM-5: on the reaction pathway[J]. Catal Lett,2000,64:49−51.  doi: 10.1023/A:1019014431678

    37. [37]

      HA V, TIEP L, MÉRIAUDEAU P, NACCACHE C. Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism[J]. J Mol Catal A: Chem,2002,181:283−290.  doi: 10.1016/S1381-1169(01)00373-9

    38. [38]

      RAZDAN N, KUMAR A, FOLEY B, BHAN A. Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. J Catal,2020,381:261−270.  doi: 10.1016/j.jcat.2019.11.004

    39. [39]

      CHEN L, LIN L, XU Z, LI X, ZHANG T. Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst[J]. J Catal,1995,157:190−200.  doi: 10.1006/jcat.1995.1279

    40. [40]

      XU Y, LIU S, WANG L, XIE M, GUO X. Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts[J]. Catal Lett,1995,30:135−149.  doi: 10.1007/BF00813680

    41. [41]

      LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects[J]. J Catal,1999,181:175−188.  doi: 10.1006/jcat.1998.2310

    42. [42]

      SHU J, ADNOT A, GRANDJEAN B. Bifunctional behavior of Mo/HZSM-5 catalysts in methane aromatization[J]. Ind Eng Chem Res,1999,38:3860−3867.  doi: 10.1021/ie990145i

    43. [43]

      LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene[J]. Kinet Catal,2000,41:132−144.  doi: 10.1007/BF02756152

    44. [44]

      MA D, SHU Y, CHENG M, XU Y, BAO X. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal,2000,194:105−114.  doi: 10.1006/jcat.2000.2908

    45. [45]

      DING W, LI S, MEITZNER G, IGLESIA E. Methane conversion to aromatics on Mo/HZSM-5: Structure of molybdenum species in working catalysts[J]. J Phys Chem B,2001,105:605−513.

    46. [46]

      DING W, MEITZNER G, MARLER D, IGLESIA E. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5[J]. J Phys Chem B,2001,105:3928−3936.  doi: 10.1021/jp003413v

    47. [47]

      DING W, MEITZNER G, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal,2002,206:14−22.  doi: 10.1006/jcat.2001.3457

    48. [48]

      KOSINOV N, COUMANS F, USLAMIN E, WIJPKEMA S, MEZARI B, HENSEN E. Methane dehydroaromatization by Mo/HZSM-5: Mono- or bifunctional catalysis[J]. ACS Catal,2017,7:520−529.  doi: 10.1021/acscatal.6b02497

    49. [49]

      KOSINOV N, USLAMIN E, COUMANS J, WIJPKEMA A, ROHLING R, HENSEN E. Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5[J]. ACS Catal,2018,8:8459−8467.  doi: 10.1021/acscatal.8b02491

    50. [50]

      VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUZREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci,2018,9:4801−4807.  doi: 10.1039/C8SC01263F

    51. [51]

      CAGLAYAN M, PAIONI A, ABOU-HAMAD E, SHTERK G, PUSTOVARENKO A, BALDUS M, CHOWDHURY A, GASCON J. Initial carbon-carbon bond formation during the early stages of methane dehydroaromatization[J]. Angew Chem Int Ed,2020,59:16741−16746.  doi: 10.1002/anie.202007283

    52. [52]

      GAO W, QI G, WANG Q, WANG W, LI S, HUNG I, GAO Z, XU J, DENG F. Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: Insight from solid-state NMR spectroscopy[J]. Angew Chem Int Ed,2021,60:10709−10715.  doi: 10.1002/anie.202017074

    53. [53]

      WANG K, HUANG X, LI D. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: one-step synthesis and the exceptional catalytic performance[J]. Appl Catal A: Gen,2018,556:10−19.  doi: 10.1016/j.apcata.2018.02.030

    54. [54]

      HUANG X, JIAO X, LIN M, WANG K, JIA L, HOU B, LI D. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol,2018,8:5740−5749.  doi: 10.1039/C8CY01391H

    55. [55]

      JIAO X, HUANG X, WANG K. In situ UV-Raman spectroscopy of the coking-caused deactivation mechanism over an Mo/HMCM-22 catalyst in methane dehydroaromatization[J]. Catal Sci Technol,2019,9:6552−6555.  doi: 10.1039/C9CY01932D

    56. [56]

      VOLLMER I, LI G, YARULINA I, KOSINOV N, HENSEN E, HOUBEN K, MANCE D, BALDUS M, GASCON J, KAPTEIJN F. Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization[J]. Catal Sci Technol,2018,8:916−922.  doi: 10.1039/C7CY01789H

    57. [57]

      KOSINOV N, USLAMIN E, MENG L, PARASTAEV A, LIU Y, HENSEN E. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts[J]. Angew Chem Int Ed,2019,131:7142−7146.  doi: 10.1002/ange.201902730

    58. [58]

      JULIAN I, ROEDERN M, HUESO J, IRUSTA S, BADEN A, MALLADA R, DAVIS Z, SANTAMARIA J. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization[J]. Appl Catal B: Environ,2020,263:118360.  doi: 10.1016/j.apcatb.2019.118360

    59. [59]

      BALYAN S, HAIDER M, KHAN T, PANT K. Boric acid treated HZSM-5 for improved catalyst activity in non-oxidative methane dehydroaromatization[J]. Catal Sci Technol,2020,10:3857−3867.  doi: 10.1039/D0CY00286K

    60. [60]

      GU Y, CHEN P, YAN H, WANG X, LYU Y, TIAN Y, LIU W, YAN Z, LIU X. Coking mechanism of Mo/ZSM-5 catalyst in methane dehydroaromatization[J]. Appl Catal A: Gen,2021,613:118019.  doi: 10.1016/j.apcata.2021.118019

    61. [61]

      ZHANG Y, JIANG H. A novel route to improve methane aromatization by using a simple composite catalyst[J]. Chem Commun,2018,54:10343−10346.  doi: 10.1039/C8CC05059G

    62. [62]

      KUMAR A, SONG K, LIU L, HAN Y, BHAN A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. Angew Chem Int Ed,2018,57:15577−15582.  doi: 10.1002/anie.201809433

    63. [63]

      SIM J, LEE B, HAN G, KIM D, LEE K. Promotional effect of Au on Fe/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel,2020,274:117852.  doi: 10.1016/j.fuel.2020.117852

    64. [64]

      HAN S, LEE S, KIM H, KIM S, KIM Y. Nonoxidative direct conversion of methane on silica-based iron catalysts: Effect of catalytic surface[J]. ACS Catal,2019,9:7984−7997.  doi: 10.1021/acscatal.9b01643

    65. [65]

      SOT P, NEWTON M, BAABE D, MALTER M, BAVEL A, HORTON A, COPERET C, BOKHOVEN J. Non-oxidative methane coupling over silica versus silica-supported iron(II) single sites[J]. Chem A Euro J,2020,26:8012−8016.  doi: 10.1002/chem.202001139

    66. [66]

      EGGART D, ZIMINA A, CAVUSOGLU G, CASAPU M, DORONKIN D, LOMACHENKO K, GRUNWALDT J. Versatile and high temperature spectroscopic cell for operando fluorescence and transmission X-ray absorption spectroscopy studies of heterogeneous catalysts[J]. Rev Sci Instrum,2021,92:023106.  doi: 10.1063/5.0038428

    67. [67]

      XIE P, PU T, NIE A, HWANG S, PURDY S, YU W, SU D, MILLER J, WANG C. Nanoceria-supported single-atom platinum catalysts for direct methane conversion[J]. ACS Catal,2018,8:4044−4048.  doi: 10.1021/acscatal.8b00004

    68. [68]

      XIAO Y, VARMA A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts[J] ACS Catal, 2018, 8: 2735−2740.

    69. [69]

      DIPU A, OHBUCHI S, NISHIKAWA Y, IGUCHI S, OGIHARA H, YAMANAKA I. Direct nonoxidative conversion of methane to higher hydrocarbons over silica-supported nickel phosphide catalyst[J] ACS Catal, 2020, 10: 375−379.

    70. [70]

      HAO J, SCHWACH P, LI L, GUO X, WENG J, ZHANG H, SHEN H, FANG G, HUANG X, PAN X, XIAO C, YANG X, BAO X. Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction[J]. J Energy Chem,2021,52:372−376.  doi: 10.1016/j.jechem.2020.04.001

    71. [71]

      LIU Y, LIU J, LI T, DUAN Z, ZHANG T, YAN M, LI W, XIAO H, WANG Y, CHANG C, LI J. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts[J]. Angew Chem Int Ed,2020,59:18586−18590.  doi: 10.1002/anie.202003908

    72. [72]

      HAO J, SCHWACH P, FANG G, GUO X, ZHANG H, SHEN H, HUANG X, EGGART D, PAN X, BAO X. Enhanced methane conversion to olefins and aromatics by H-donor molecules under nonoxidative condition[J]. ACS Catal,2019,9:9045−9050.  doi: 10.1021/acscatal.9b01771

    73. [73]

      SAKBODIN M, WU Q, OH S, WACHSMAN E, LIU D. Hydeogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed,2016,55:16149−16152.  doi: 10.1002/anie.201609991

    74. [74]

      OH S, SCHULAMAN E, ZHANG J, FAN J, PAN Y, MENG J, LIU D. Direct non-oxidative methane conversion in a millisecond catalytic wall reactor[J]. Angew Chem Int Ed,2019,58:7083−7086.  doi: 10.1002/anie.201903000

    75. [75]

      KIM H, LEE S, NA G, HAN S, KIM S, SHIN J, CHANG H, KIM Y. Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence[J]. React Chem Eng,2021,6:235−243.  doi: 10.1039/D0RE00378F

    76. [76]

      POSTMA R, LEFFERTS L. Influence of axial temperature profiles on Fe/SiO2 catalyzed non-oxidative coupling of methane[J]. ChemCatChem,2021,13:1157−1160.  doi: 10.1002/cctc.202001785

    77. [77]

      ZHANG X, YOU R, WEI Z, JIANG X, YANG J, PAN Y, WU P, JIA Q, BAO Z, BAI L, JIN M, SUMPTER B, FUNG V, HUANG W, WU Z. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts[J]. Angew Chem Int Ed,2020,59:8042−8046.  doi: 10.1002/anie.202002440

    78. [78]

      SUN Yang, DING Dou-dou, LIN Chang, LIU Xiang-lin, ZHANG Chao, TIAN Peng-fei, CAO Chen-xi, YANG Zi-xu, XU Jin, HAN Yi-fan. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chem Ind Eng Prog,2019,38(1):260−277.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(0)
  • Abstract views(1661)
  • HTML views(460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return