Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)
- Corresponding author: Xiao-bo WANG, wxbtyut@163.com
Citation:
Xin HUANG, Xi JIAO, Xiao-bo WANG, Ning ZHAO. Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(1): 44-53.
doi:
10.19906/j.cnki.JFCT.2021073
ZHOU Shu-hui, WANG Jun, LIANG Yan. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Nat Gas Ind,2021,41(2):171−182.
doi: 10.3787/j.issn.1000-0976.2021.02.02(
BAO Xin-he. Nano confinement and catalytic conversion of energy molecules[J]. Chin Sci Bull,2018,63(14):1265−1274.
doi: 10.1360/N972018-00441
HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol,2018,46(9):1087−1100.
doi: 10.3969/j.issn.0253-2409.2018.09.008
UPHAM C, AGARWAL V, KHECHFE A, SNODGRASS Z R, GORDON M J, METIU H, MCFARLAND E W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science,2017,358:917−921.
doi: 10.1126/science.aao5023
DÍZA-URRUTIA C, OTT T. Activation of methane to CH3+: A selective industrial route to methanesulfonic acid[J]. Science,2019,363:1326−1329.
doi: 10.1126/science.aav0177
SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S, YAVUZ C. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781.
doi: 10.1126/science.aav2412
JIN Z, WANG L, ZUIDEMA E, MONDAL K, ZHANG M, ZHANG J, WANG C, MENG X, YANG H, MESTERS C, XIAO F. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science,2020,367:193−197.
doi: 10.1126/science.aaw1108
WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett,1993,21:35−41.
doi: 10.1007/BF00767368
GUO X, FANG G, LI G, MA H, FAN H, YU L, MA C, WU X, DENG D, WEI M, TAN D, SI R, ZHANG S, LI J, SUN L, TANG Z, PAN X, BAO X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science,2014,344:616−619.
doi: 10.1126/science.1253150
VOLLMER I, YARULINA I, KAPTEIJN F, GASCON J. Progress in developing a structure-activity relationship for the direct aromatization of methane[J]. ChemCatChem,2019,11:39−52.
doi: 10.1002/cctc.201800880
SCHWACH P, PAN X, BAO X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chem Rev,2017,117:8497−8520.
doi: 10.1021/acs.chemrev.6b00715
KOSINOV N, HENSEN E. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Adv Mater,2020,2002565.
XU Y, BAO X, LIN L. Direct conversion of methane under nonoxidative conditions[J]. J Catal,2003,216:386−395.
doi: 10.1016/S0021-9517(02)00124-0
MA S, GUO X, ZHAO L, SCOTT S, BAO X. Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology[J]. J Energy Chem,2013,22:1−20.
doi: 10.1016/S2095-4956(13)60001-7
ISMAGILOV Z, MATUS E, TSIKOZA L. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives[J]. Energy Environ Sci,2008,1:526−541.
doi: 10.1039/b810981h
SPIVEY J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev,2014,43:792−803.
doi: 10.1039/C3CS60259A
KIANI D, SOURAV S, TANG Y, BALTRUSAITIS J, WACHS I. Methane activation by ZSM-5-supported transition metal centers[J]. Chem Soc Rev,2021,50:1251−1268.
doi: 10.1039/D0CS01016B
MENON U, RAHMAN M, KHATIB S. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts[J]. Appl Catal A: Gen,2020,608:117870.
doi: 10.1016/j.apcata.2020.117870
XU Y, YUAN X, CHEM M, DONG A, LIU B, JIANG F, YANG S, LIU X. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient nonoxidative methane dehydroaromatization[J]. J Catal,2021,396:224−241.
doi: 10.1016/j.jcat.2021.02.028
XU Y, CHEM M, WANG T, LIU B, JIANG F, LIU X. Probing cobalt localization of HZSM-5 for efficient methane dehydroaromatization catalysts[J]. J Catal,2020,387:102−118.
doi: 10.1016/j.jcat.2020.04.021
XU Y, CHEM M, LIU B, JIANG F, LIU X. CH4 conversion over Ni/HZSM-5 catalyst in the absence of oxygen: decomposition or dehydroaromatization[J]. Chem Commun,2020,56:4396−4399.
doi: 10.1039/D0CC01345E
THAKUR R, HOFFMAN M, VAHIDMOHAMMAD A, SMITH J, CHI M, TATARCHUK B, BEIDAGHI M, CARRERO C. Multilayered two-dimensional V2CTx MXene for methane dehydroaromatization[J]. ChemCatChem,2020,12:3639−3643.
doi: 10.1002/cctc.201902366
DUTTA K, LI L, GUPTA P, GURIERREZ D, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun,2018,108:16−19.
KANITKAR S, ABEDIN M, BHATTAR S, SPIVEY J. Methane dehydroaromatization over molybdenum supported on sulfated zirconia catalysts[J]. Appl Catal A: Gen,2019,575:25−37.
doi: 10.1016/j.apcata.2019.01.013
LEZCAO-GONZÁLEZ I, OORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S, WECKHUYSEN B, BEALE A. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods[J]. Angew Chem Int Ed,2016,55:5215−5219.
doi: 10.1002/anie.201601357
AGOTE-ARÁN M, KRONER A, ISLAM H, SŁAWIŃSKI W, WRAGG D, LEZCAO-GONZÁLEZ I, BEALE A. Determination of molybdenum species evolution during non-oxidative dehydroaromatization of methane and its implications for catalytic performance[J]. ChemCatChem,2019,11:473−480.
doi: 10.1002/cctc.201801299
AGOTE-ARÁN M, FLETCHER R, BRICENO M, KRONER A, SAZANOVICH I, SLATER B, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Implications of the molybdenum coordination environment in MFI zeolites on methane dehydroaromatization performance[J]. ChemCatChem,2020,12:294−304.
doi: 10.1002/cctc.201901166
AGOTE-ARÁN M, KRONER A, WRAGG D, SŁAWIŃSKI W, BRICENO M, ISLAM H, SAZANOVICH I, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Understanding the deactivation phenomena of small-pore Mo/H-SSZ-13 during methane dehydroaromatization[J]. Molecules,2020,25:5048.
doi: 10.3390/molecules25215048
KOSINOV N, WIJPKEMA A, USLAMIN E, ROHLING R, COUMANS F, MEZARI B, PARASTAEV A, PORYVAEV A, FEDIN M, PIDKO E, HENSEN E. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed,2018,57:1016−1020.
doi: 10.1002/anie.201711098
VOLLMER I, KOSINOV N, SZÉCSÉNYI Á, LI G, YARULINA I, ABOU-HAMAD E, GURINOV A, OULD-CHIKH S, AGUILAR-TAPIA A, HAZEMANN J, PIDKO E, HENSEN E, KAPTEIJN F, GASCON J. A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation[J]. J Catal,2019,370:321−331.
doi: 10.1016/j.jcat.2019.01.013
LIU L, WANG N, ZHU C, LIU X, ZHU Y, GUO P, ALFILFIL L, DONG X, ZHANG D, HAN Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angew Chem Int Ed,2020,132:829−835.
doi: 10.1002/ange.201909834
KONNOV S, DUBRAY F, CLATWORTHY E, KOUVATAS C, GILSON J, DATH J, MINOUX D, AQUINO C, VALTCHEV V, MOLDOVAN S, KONETI S, NESTERENKO N, MINTOVA S. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angew Chem Int Ed,2020,59:19553−19560.
doi: 10.1002/anie.202006524
WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal,1996,3:289−297.
doi: 10.1007/BF02113855
VOLLMER I, ABOU-HAMAD E, GASCON J, KAPTEIJN F. Aromatization of ethylene-main intermediate for MDA[J]. ChemCatChem,2020,12:544−549.
doi: 10.1002/cctc.201901655
MÉRIAUDEAU P, TIEP L, HA V, NACCACHE C, SZABO G. Aromatization of methane over Mo/H-ZSM-5 catalyst: on the possible reaction intermediates[J]. J Mol Catal A: Chem,1999,144:469−471.
doi: 10.1016/S1381-1169(99)00050-3
MÉRIAUDEAU P, HA V, TIEP L. Methane aromatization over Mo/H-ZSM-5: on the reaction pathway[J]. Catal Lett,2000,64:49−51.
doi: 10.1023/A:1019014431678
HA V, TIEP L, MÉRIAUDEAU P, NACCACHE C. Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism[J]. J Mol Catal A: Chem,2002,181:283−290.
doi: 10.1016/S1381-1169(01)00373-9
RAZDAN N, KUMAR A, FOLEY B, BHAN A. Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. J Catal,2020,381:261−270.
doi: 10.1016/j.jcat.2019.11.004
CHEN L, LIN L, XU Z, LI X, ZHANG T. Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst[J]. J Catal,1995,157:190−200.
doi: 10.1006/jcat.1995.1279
XU Y, LIU S, WANG L, XIE M, GUO X. Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts[J]. Catal Lett,1995,30:135−149.
doi: 10.1007/BF00813680
LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects[J]. J Catal,1999,181:175−188.
doi: 10.1006/jcat.1998.2310
SHU J, ADNOT A, GRANDJEAN B. Bifunctional behavior of Mo/HZSM-5 catalysts in methane aromatization[J]. Ind Eng Chem Res,1999,38:3860−3867.
doi: 10.1021/ie990145i
LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene[J]. Kinet Catal,2000,41:132−144.
doi: 10.1007/BF02756152
MA D, SHU Y, CHENG M, XU Y, BAO X. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal,2000,194:105−114.
doi: 10.1006/jcat.2000.2908
DING W, LI S, MEITZNER G, IGLESIA E. Methane conversion to aromatics on Mo/HZSM-5: Structure of molybdenum species in working catalysts[J]. J Phys Chem B,2001,105:605−513.
DING W, MEITZNER G, MARLER D, IGLESIA E. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5[J]. J Phys Chem B,2001,105:3928−3936.
doi: 10.1021/jp003413v
DING W, MEITZNER G, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal,2002,206:14−22.
doi: 10.1006/jcat.2001.3457
KOSINOV N, COUMANS F, USLAMIN E, WIJPKEMA S, MEZARI B, HENSEN E. Methane dehydroaromatization by Mo/HZSM-5: Mono- or bifunctional catalysis[J]. ACS Catal,2017,7:520−529.
doi: 10.1021/acscatal.6b02497
KOSINOV N, USLAMIN E, COUMANS J, WIJPKEMA A, ROHLING R, HENSEN E. Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5[J]. ACS Catal,2018,8:8459−8467.
doi: 10.1021/acscatal.8b02491
VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUZREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci,2018,9:4801−4807.
doi: 10.1039/C8SC01263F
CAGLAYAN M, PAIONI A, ABOU-HAMAD E, SHTERK G, PUSTOVARENKO A, BALDUS M, CHOWDHURY A, GASCON J. Initial carbon-carbon bond formation during the early stages of methane dehydroaromatization[J]. Angew Chem Int Ed,2020,59:16741−16746.
doi: 10.1002/anie.202007283
GAO W, QI G, WANG Q, WANG W, LI S, HUNG I, GAO Z, XU J, DENG F. Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: Insight from solid-state NMR spectroscopy[J]. Angew Chem Int Ed,2021,60:10709−10715.
doi: 10.1002/anie.202017074
WANG K, HUANG X, LI D. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: one-step synthesis and the exceptional catalytic performance[J]. Appl Catal A: Gen,2018,556:10−19.
doi: 10.1016/j.apcata.2018.02.030
HUANG X, JIAO X, LIN M, WANG K, JIA L, HOU B, LI D. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol,2018,8:5740−5749.
doi: 10.1039/C8CY01391H
JIAO X, HUANG X, WANG K. In situ UV-Raman spectroscopy of the coking-caused deactivation mechanism over an Mo/HMCM-22 catalyst in methane dehydroaromatization[J]. Catal Sci Technol,2019,9:6552−6555.
doi: 10.1039/C9CY01932D
VOLLMER I, LI G, YARULINA I, KOSINOV N, HENSEN E, HOUBEN K, MANCE D, BALDUS M, GASCON J, KAPTEIJN F. Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization[J]. Catal Sci Technol,2018,8:916−922.
doi: 10.1039/C7CY01789H
KOSINOV N, USLAMIN E, MENG L, PARASTAEV A, LIU Y, HENSEN E. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts[J]. Angew Chem Int Ed,2019,131:7142−7146.
doi: 10.1002/ange.201902730
JULIAN I, ROEDERN M, HUESO J, IRUSTA S, BADEN A, MALLADA R, DAVIS Z, SANTAMARIA J. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization[J]. Appl Catal B: Environ,2020,263:118360.
doi: 10.1016/j.apcatb.2019.118360
BALYAN S, HAIDER M, KHAN T, PANT K. Boric acid treated HZSM-5 for improved catalyst activity in non-oxidative methane dehydroaromatization[J]. Catal Sci Technol,2020,10:3857−3867.
doi: 10.1039/D0CY00286K
GU Y, CHEN P, YAN H, WANG X, LYU Y, TIAN Y, LIU W, YAN Z, LIU X. Coking mechanism of Mo/ZSM-5 catalyst in methane dehydroaromatization[J]. Appl Catal A: Gen,2021,613:118019.
doi: 10.1016/j.apcata.2021.118019
ZHANG Y, JIANG H. A novel route to improve methane aromatization by using a simple composite catalyst[J]. Chem Commun,2018,54:10343−10346.
doi: 10.1039/C8CC05059G
KUMAR A, SONG K, LIU L, HAN Y, BHAN A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. Angew Chem Int Ed,2018,57:15577−15582.
doi: 10.1002/anie.201809433
SIM J, LEE B, HAN G, KIM D, LEE K. Promotional effect of Au on Fe/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel,2020,274:117852.
doi: 10.1016/j.fuel.2020.117852
HAN S, LEE S, KIM H, KIM S, KIM Y. Nonoxidative direct conversion of methane on silica-based iron catalysts: Effect of catalytic surface[J]. ACS Catal,2019,9:7984−7997.
doi: 10.1021/acscatal.9b01643
SOT P, NEWTON M, BAABE D, MALTER M, BAVEL A, HORTON A, COPERET C, BOKHOVEN J. Non-oxidative methane coupling over silica versus silica-supported iron(II) single sites[J]. Chem A Euro J,2020,26:8012−8016.
doi: 10.1002/chem.202001139
EGGART D, ZIMINA A, CAVUSOGLU G, CASAPU M, DORONKIN D, LOMACHENKO K, GRUNWALDT J. Versatile and high temperature spectroscopic cell for operando fluorescence and transmission X-ray absorption spectroscopy studies of heterogeneous catalysts[J]. Rev Sci Instrum,2021,92:023106.
doi: 10.1063/5.0038428
XIE P, PU T, NIE A, HWANG S, PURDY S, YU W, SU D, MILLER J, WANG C. Nanoceria-supported single-atom platinum catalysts for direct methane conversion[J]. ACS Catal,2018,8:4044−4048.
doi: 10.1021/acscatal.8b00004
XIAO Y, VARMA A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts[J] ACS Catal, 2018, 8: 2735−2740.
DIPU A, OHBUCHI S, NISHIKAWA Y, IGUCHI S, OGIHARA H, YAMANAKA I. Direct nonoxidative conversion of methane to higher hydrocarbons over silica-supported nickel phosphide catalyst[J] ACS Catal, 2020, 10: 375−379.
HAO J, SCHWACH P, LI L, GUO X, WENG J, ZHANG H, SHEN H, FANG G, HUANG X, PAN X, XIAO C, YANG X, BAO X. Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction[J]. J Energy Chem,2021,52:372−376.
doi: 10.1016/j.jechem.2020.04.001
LIU Y, LIU J, LI T, DUAN Z, ZHANG T, YAN M, LI W, XIAO H, WANG Y, CHANG C, LI J. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts[J]. Angew Chem Int Ed,2020,59:18586−18590.
doi: 10.1002/anie.202003908
HAO J, SCHWACH P, FANG G, GUO X, ZHANG H, SHEN H, HUANG X, EGGART D, PAN X, BAO X. Enhanced methane conversion to olefins and aromatics by H-donor molecules under nonoxidative condition[J]. ACS Catal,2019,9:9045−9050.
doi: 10.1021/acscatal.9b01771
SAKBODIN M, WU Q, OH S, WACHSMAN E, LIU D. Hydeogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed,2016,55:16149−16152.
doi: 10.1002/anie.201609991
OH S, SCHULAMAN E, ZHANG J, FAN J, PAN Y, MENG J, LIU D. Direct non-oxidative methane conversion in a millisecond catalytic wall reactor[J]. Angew Chem Int Ed,2019,58:7083−7086.
doi: 10.1002/anie.201903000
KIM H, LEE S, NA G, HAN S, KIM S, SHIN J, CHANG H, KIM Y. Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence[J]. React Chem Eng,2021,6:235−243.
doi: 10.1039/D0RE00378F
POSTMA R, LEFFERTS L. Influence of axial temperature profiles on Fe/SiO2 catalyzed non-oxidative coupling of methane[J]. ChemCatChem,2021,13:1157−1160.
doi: 10.1002/cctc.202001785
ZHANG X, YOU R, WEI Z, JIANG X, YANG J, PAN Y, WU P, JIA Q, BAO Z, BAI L, JIN M, SUMPTER B, FUNG V, HUANG W, WU Z. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts[J]. Angew Chem Int Ed,2020,59:8042−8046.
doi: 10.1002/anie.202002440
SUN Yang, DING Dou-dou, LIN Chang, LIU Xiang-lin, ZHANG Chao, TIAN Peng-fei, CAO Chen-xi, YANG Zi-xu, XU Jin, HAN Yi-fan. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chem Ind Eng Prog,2019,38(1):260−277.
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030