Citation: Qing HE, Heng LI, Si-min WANG, Chen CHENG, Qing-hua GUO, Guang-suo YU. Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 143-151. doi: 10.19906/j.cnki.JFCT.2021072 shu

Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics

  • Corresponding author: Qing-hua GUO, gqh@ecust.edu.cn
  • Received Date: 7 June 2021
    Revised Date: 17 July 2021

Figures(7)

  • In the present work, the effects of iron-based catalysts from coal liquefaction on the coal structure and gasification reactivity were studied using the Hami raw coal and demineralized coal. The surface morphology, element distribution and mesoporous characteristics of coal char were investigated by SEM-EDS and physical adsorption analyzer. The gasification reactivity was performed in a thermogravimetric analyzer. The gasification kinetics was studied through the model-fitting and model-free methods. The results showed that the demineralization and catalyst loading had more obvious effect on the surface attachments than the carbon matrix. The coal char with catalyst loading had significant larger specific surface area (SSA). The reactivity improvement by iron-based catalyst was attributed to the enrichment of Fe and AAEMS and increase of SSA for coal char. More pronounced relative catalytic activity was observed for the catalytic gasification of demineralized coal char, and its activity was not sensitive to the change of heating rate and carbon conversion. The gasification characteristics difference decreased with the increase of heating rate. The iron-based catalyst increased the pre-exponential factor A for the demineralized coal char gasification, and reduced the activation energy Ea for the raw coal char gasification. Under the non-isothermal conditions, the Ea decreased with conversion. According to fitting performance and kinetic compensation effect, the random pore model was the best model to describe gasification, especially for the (catalytic) gasification of the demineralized coal char.
  • 加载中
    1. [1]

      WANG Ming-hua, JIANG Wen-hua, HAN Yi-jie. Analysis on the present situation and problems of modern coal-chemical industry[J]. Chem Ind Eng Prog,2017,36(8):2882−2887.

    2. [2]

      CHU X, LI W, LI B, CHEN H. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal[J]. Fuel,2008,87(2):211−215.  doi: 10.1016/j.fuel.2007.04.014

    3. [3]

      ZHANG X, SONG X, WANG J, SU W, BAI Y, ZHOU B, YU G. CO2 gasification of Yangchangwan coal catalyzed by iron-based waste catalyst from indirect coal-liquefaction plant[J]. Fuel,2021,285:119228.  doi: 10.1016/j.fuel.2020.119228

    4. [4]

      ZHAO D, LIU H, LU P, SUN B, GUO S, QIN M. DFT study of the catalytic effect of Fe on the gasification of char-CO2[J]. Fuel,2021,292.

    5. [5]

      LIU D, GAO J, WU S, QIN Y. Effect of char structures caused by varying the amount of FeCl3 on the pore development during activation[J]. RSC Adv,2016,6(90):87478−87485.  doi: 10.1039/C6RA14712G

    6. [6]

      XU B, CAO Q, KUANG D, GASEM K A M, ADIDHARMA H, DING D, FAN M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3-FeCO3[J]. J Energy Inst,2020,93(3):922−933.  doi: 10.1016/j.joei.2019.08.004

    7. [7]

      ZHANG F, SUN H, BI J, QU X, YAN S, ZHANG J, ZHANG J. The evolution of Fe and Fe-Ca catalysts during char catalytic hydrogasification[J]. Fuel,2019,257:116040.  doi: 10.1016/j.fuel.2019.116040

    8. [8]

      LAHIJANI P, ZAINAL Z A, MOHAMED A R. Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char[J]. Thermochim Acta,2012,546:24−31.  doi: 10.1016/j.tca.2012.07.023

    9. [9]

      YU G, YU D, LIU F, YU X, HAN J, WU J, XU M. Different catalytic action of ion-exchanged calcium in steam and CO2 gasification and its effects on the evolution of char structure and reactivity[J]. Fuel,2019,254.

    10. [10]

      HE Q, YU J, SONG X, DING L, WEI J, YU G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components[J]. Energy,2020,192:116642.  doi: 10.1016/j.energy.2019.116642

    11. [11]

      HE Q, GUO Q, UMEKI K, DING L, WANG F, YU G. Soot formation during biomass gasification: A critical review[J]. Renewable Sustainable,2021,139:110710.  doi: 10.1016/j.rser.2021.110710

    12. [12]

      LIN Shanjun, ZHOU Zhijie, HUO Wei, DING Lu, YU Guangsuo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol,2014,8:905−912.  doi: 10.3969/j.issn.0253-2409.2014.08.002

    13. [13]

      ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energy,2015,145:295−305.  doi: 10.1016/j.apenergy.2015.01.098

    14. [14]

      MONTERROSO R, FAN M, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOWLER B, SUN Q. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification[J]. Fuel,2014,116:341−349.  doi: 10.1016/j.fuel.2013.08.003

    15. [15]

      HE Q, DING L, GONG Y, LI W, WEI J, YU G. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresour Technol,2019,280:104−111.  doi: 10.1016/j.biortech.2019.01.138

    16. [16]

      GUO Q, HUANG Y, HE Q, GONG Y, YU G. Analysis of coal gasification reactivity, kinetics, and mechanism with iron-based catalyst from coal liquefaction[J]. ACS Omega,2021,6(2):1584−1592.  doi: 10.1021/acsomega.0c05425

    17. [17]

      ELLIS N, MASNADI M S, ROBERTS D G, KOCHANEK M A, ILYUSHECHKIN A Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chem Eng J,2015,279:402−408.  doi: 10.1016/j.cej.2015.05.057

    18. [18]

      LIANG D, XIE Q, ZHOU H, YANG M, CAO J, ZHANG J. Catalytic effect of alkali and alkaline earth metals in different occurrence modes in Zhundong coals[J]. Asia-Pac J Chem Eng,2018,13(3):e2190.  doi: 10.1002/apj.2190

    19. [19]

      HE Q, DING L, RAHEEM A, GUO Q, GONG Y, YU G. Kinetics comparison and insight into structure-performance correlation for leached biochar gasification[J]. Chem Eng J,2021,129331.

    20. [20]

      JAYARAMAN K, KOK M V, GOKALP I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS[J]. Appl Therm Eng,2017,125:1446−1455.  doi: 10.1016/j.applthermaleng.2017.07.128

    21. [21]

      ZHAO M, RAHEEM A, MEMON Z M, VUPPALADADIYAM A K, JI G. Iso-conversional kinetics of low-lipid micro-algae gasification by air[J]. J Clean Prod,2019,207:618−629.  doi: 10.1016/j.jclepro.2018.10.040

    22. [22]

      ZHANG K, LI Y, WANG Z, LI Q, WHIDDON R, HE Y, CEN K. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel,2016,185:701−708.  doi: 10.1016/j.fuel.2016.08.038

    23. [23]

      LU Chen, ZHOU Zhijie, XIN Liu, SHUAI Yuan, WANG Fuchen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol,2012,40(6):648−654.  doi: 10.3969/j.issn.0253-2409.2012.06.002

    24. [24]

      HE Y, CHANG C, LI P, HAN X, LI H, FANG S, CHEN J, MA X. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis[J]. Bioresour Technol,2018,259:294−303.  doi: 10.1016/j.biortech.2018.03.043

    25. [25]

      LI Weiwei, HUANG Jiejie, WANG Zhiqing, DUAN Huiwen, LI Junguo, FANG Yitian. Reaction kinetics of coal char gasification with CO2 and the effect of internal diffusion on the gasification[J]. J Fuel Chem Technol,2016,44(12):1416−1421.  doi: 10.3969/j.issn.0253-2409.2016.12.002

    26. [26]

      MIURA K, SILVESTON P L. Analysis of gas-solid reactions by use of a temperature-programmed reaction technique[J]. Energy Fuels,1989,3(2):243−249.  doi: 10.1021/ef00014a020

    27. [27]

      IWASZENKO S, HOWANIEC N, SMOLIŃSKI A. Determination of random pore model parameters for underground coal gasification simulation[J]. Energy,2019,166:972−978.  doi: 10.1016/j.energy.2018.10.156

    28. [28]

      GAO X, ZHANG Y, LI B, ZHAO Y, JIANG B. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model[J]. Bioresour Technol,2016,218:1073−1081.  doi: 10.1016/j.biortech.2016.07.057

    29. [29]

      KIM R-G, HWANG C-W, JEON C-H. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure[J]. Appl Energy,2014,129:299−307.  doi: 10.1016/j.apenergy.2014.05.011

    30. [30]

      OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. The CO2 gasification kinetics of olive residue[J]. Biomass Bioenergy,2003,24(2):151−161.  doi: 10.1016/S0961-9534(02)00091-0

    31. [31]

      JIANG L, ZHANG D, LI M, HE J-J, GAO Z-H, ZHOU Y, SUN J-H. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS[J]. Fuel,2018,222:11−20.  doi: 10.1016/j.fuel.2018.02.143

    32. [32]

      HE Q, GONG Y, DING L, GUO Q, YOSHIKAWA K, YU G. Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification[J]. Energy,2021,229:120724.  doi: 10.1016/j.energy.2021.120724

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    12. [12]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    13. [13]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

Metrics
  • PDF Downloads(0)
  • Abstract views(532)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return