Citation: Li-ping LIANG, Fei GAO, Ya-ke WANG, Bao-shun ZHU, Guo-min LI. Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066 shu

Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue

Figures(10)

  • With coal gangue (CG) as the carbon-containing carrier, starch as supplementary C source and nickel nitrate as Ni source, Ni/C/CG composite microwave absorbing materials were prepared by a solution impregnation and then a carbothermal reduction process. The influence of the carbothermal reduction temperature on the composition, microstructure and performance of materials was carefully studied. It was found that, the carbothermal reduction temperature had a great effect on the crystalline state of carbon and Ni, as well as the size of Ni particles, further greatly affected the electromagnetic properties, especially the dielectric properties of the materials. Due to the combination of good impedance match and strong microwave attenuation ability, the Ni/C/CG composites prepared under a wide temperature range of 600−800 ℃ all displayed excellent microwave absorption performance. For the sample heat-treated at 800 ℃, the minimum reflection loss could reach −20.9 dB at 12.9 GHz and the corresponding effective absorption band was 3.7 GHz with a coating thickness of only 2 mm. In addition, the dielectric loss was the dominant microwave absorption mechanism, which mainly originated from the conductive loss caused by the graphite carbon and Ni particles, and the interfacial polarization loss due to the existence of interface between Ni, C and CG.
  • 加载中
    1. [1]

      GENUIS S J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation[J]. Public Health,2008,122:113−124.  doi: 10.1016/j.puhe.2007.04.008

    2. [2]

      CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457.  doi: 10.3724/SP.J.1077.2011.00449

    3. [3]

      KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273.  doi: 10.15541/jim20180178

    4. [4]

      HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin,2018,67(22):9−28+438.

    5. [5]

      CAO Min, DENG Yu-xi, XU Kang, HAO Xiao-feng, HU Jia-yu, YANG Xi. Research progress of new carbon based magnetic composite electromagnetic waveabsorbing materials[J]. Acta Mater Compos Sin,2020,37(12):3004−3016.

    6. [6]

      WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452.  doi: 10.1021/jp4000544

    7. [7]

      WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946.  doi: 10.1039/C4TA02815E

    8. [8]

      ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805:1071−1080.  doi: 10.1016/j.jallcom.2019.07.177

    9. [9]

      LIU L, HE N, WU T, HU P B, TONG G X. Co/C/Fe/C Hierarchical flowers with strawberry-like surface as surface plasmon for Enhanced permittivity, permeability, and microwave absorption properties[J]. Chem Eng J,2019,355:103−108.  doi: 10.1016/j.cej.2018.08.131

    10. [10]

      SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:439−444.

    11. [11]

      LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. J Clean Prod,2019,239:117946.  doi: 10.1016/j.jclepro.2019.117946

    12. [12]

      YAN S, ZHANG F Y, WANG L, RONG Y D, HE P G, JIA D C, YANG J L. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters[J]. J Environ Manage,2019,246:174−183.  doi: 10.1016/j.jenvman.2019.05.120

    13. [13]

      LI G M, MAO L T, Zhu B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8(40):14238−14245.  doi: 10.1039/D0TC03633A

    14. [14]

      TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and Microwave Absorption of Fe3O4 Loaded Ceramic Composite by Recycling of Coal Gangue[J]. J Fuel Chem Technol,2021,49(9):1347−1353.

    15. [15]

      SHU R W, WU Y, LI Z Y, ZHANG J B, WAN Z L, LIU Y, ZHENG M D. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band[J]. Compos Sci Technol,2019,184:107839.  doi: 10.1016/j.compscitech.2019.107839

    16. [16]

      YANG S, GUO X, CHEN P, XU D W, QIU H F, ZHU X Y. Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption[J]. J Alloys Compd,2019,797:1310−1319.  doi: 10.1016/j.jallcom.2019.05.190

    17. [17]

      MA T, CUI Y, SHA Y L, LIU L, GE J W, MENG F D, WANG F H. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance[J]. Synth Met,2020,265:116407.  doi: 10.1016/j.synthmet.2020.116407

    18. [18]

      MU J, PERLMUTTER D D. Thermal decomposition of metal nitrates and their hydrates[J]. Thermochim Acta,1982,56(3):253−260.  doi: 10.1016/0040-6031(82)87033-0

    19. [19]

      LUO N, LI X J, WANG X H, YAN H H, ZHANG C J, WANG H T. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863.  doi: 10.1016/j.carbon.2010.06.051

    20. [20]

      FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095−14107.  doi: 10.1103/PhysRevB.61.14095

    21. [21]

      ZHANG Li-de, MOU Ji-mei. Nanomaterials and Nanostructures[M]. Beijing: Science Press, 2020: 227−232.

    22. [22]

      FENG Ci-zhang, MA Xi-kui. Introduction to Engineering Electromagnetic Field[M]. Beijing: Higher Education Press, 2000: 215−257.

    23. [23]

      CHEN Ji-dan, LIU Zi-yu. Dielectric Physics[M]. Beijing: China Machine Press, 1982: 138−185.

    24. [24]

      XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980.  doi: 10.1016/j.cej.2019.122980

    25. [25]

      WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273.  doi: 10.1016/j.carbon.2018.03.081

    26. [26]

      LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.

    27. [27]

      DENG L J, HAN M G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Appl Phys Lett,2007,91:023119.  doi: 10.1063/1.2755875

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    7. [7]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    15. [15]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return