Study on the mechanism of oxidation of nitrogen-containing char by CO2 based on density functional theory
- Corresponding author: Hu LIU, epeliuhu@mail.xjtu.edu.cn
Citation:
Sai ZHOU, Hu LIU, Peng-fei YU, Mao-bo YUAN, Jing-wen XUE, De-fu CHE. Study on the mechanism of oxidation of nitrogen-containing char by CO2 based on density functional theory[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(1): 19-27.
doi:
10.19906/j.cnki.JFCT.2021061
National Bureau of Statistics of China. China Statistical Yearbook[J]. Beijing: China Statistics Press, 2020.
MAO Hong-jun, LI Yue-ning, LIN Ying-chao, WANG Ting, LI Wei-zun, JU Mei-ting, ZHU Fu-dong. Overview of advances in emission control technologies for nitric oxides from biomass boilers[J]. Chin J Eng,2019,41(1):4−14.
DE SOETE G G, CROISET E, RICHARD J R. Heterogeneous formation of nitrous oxide from char-bound nitrogen[J]. Combust Flame,1999,117(1):140−154.
MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog Energy Combust Sci,1989,15(4):287−338.
doi: 10.1016/0360-1285(89)90017-8
WINTER F, WARTHA C, LÖFFLER G, HOFBAUER H. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions[J]. Symp (Int) Combust,1996,26(2):3325−3334.
doi: 10.1016/S0082-0784(96)80180-9
CHE De-fu. Thermal Coal-N Transformation and Nitrogen oxide Generation[M]. Xi'an: Xi'an Jiaotong University Press, 2013.
GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci,2003,29(2):89−113.
doi: 10.1016/S0360-1285(02)00031-X
ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of CO and NO desorption from oxidation of nitrogen-containing char by oxygen[J]. J China Coal Soc,2011,36(1):129−134.
ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012.
WANG X B, HU Z F, DENG S H, XIONG Y Y, TAN H Z. Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace[J]. Energy Procedia,2014,61:2331−2334.
doi: 10.1016/j.egypro.2014.11.1196
SALZMANN R, NUSSBAUMER T. Fuel staging for NOx reduction in biomass combustion: experiments and modeling[J]. Energy Fuels, 15(3): 575–582.
ZHANG Tai, LIU Zhao-hui, HUANG Xiao-hong, CHEN Song-tao, WANG Yong, PI Li-gang, ZHENG Chu-guang. Experimental study of gaseous pollutant formation and emission on 3 MWth oxy-fuel pilot test facility[J]. J Eng Therm,2014,35(8):1652−1655.
OHTSUKA Y, WU Z. Nitrogen release during fixed-bed gasification of several coals with CO2: Factors controlling formation of N2[J]. Fuel,1999,78(5):521−527.
doi: 10.1016/S0016-2361(98)00187-2
PARK D–C, DAY S J, NELSON P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O[J]. Proc Combust Ins,2005,30(2):2169−2175.
doi: 10.1016/j.proci.2004.08.051
ZHANG H, JIANG X M, LIU J X. Updated effect of carbon monoxide on the interaction between NO and char bound nitrogen: A combined thermodynamic and kinetic study[J]. Combust Flame,2020,220:107−118.
doi: 10.1016/j.combustflame.2020.06.032
ZHANG H, LIU J X, LIU J G, LUO L, JIANG X M. DFT study on the alternative NH3 formation path and its functional group effect[J]. Fuel,2018,214(FEB):108−114.
ZHANG H, LIU J X, WANG X Y, LUO L, JIANG X M. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel,2017,203(SEP):715−724.
LIU Yan-hua, CHE De-fu, LI Yin-tang, HUI Shi-en, XU Tong-mo. X-Ray photoelectron spectroscopy determination of the forms of nitrogen in Tongchuan coal and its chars[J]. J Xi'an Jiaotong Univ,2001,35(7):661−665.
doi: 10.3321/j.issn:0253-987X.2001.07.001
ZHAO S H, SUN R Y, BI X L, PAN X J, SU Y. Density functional theory study of the heterogenous interaction between char-bound nitrogen and CO2 during oxy-fuel coal combustion[J]. Combust Flame,2020,216:136−145.
doi: 10.1016/j.combustflame.2020.02.026
CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite Selection of molecular system and model chemistry[J]. Carbon,1998,36(7−8):1061−1070.
doi: 10.1016/S0008-6223(98)00078-5
LIU Ye-ming. Study on NOx conversion mechanism under O2/CO2 combustion with high concentration of CO2[D]. Yangzhou: Yangzhou University, 2018.
STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, FRISCH M J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623−11627.
doi: 10.1021/j100096a001
SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame,2005,143(4):629−643.
doi: 10.1016/j.combustflame.2005.08.026
ZHU Z H, FINNERTY J, LU G Q, YANG R T. A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations[J]. Energy Fuels,2002,16(6):1359−1368.
doi: 10.1021/ef0200020
ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage,2014,83(JUL):167−176.
MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char–bound nitrogen during combustion[J]. J Phys Chem A,2000,104(36):8409−8417.
doi: 10.1021/jp001045p
STEFAN G. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,15(132):1−19.
ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on zigzag carbonaceous model[J]. J China Coal Soc,2017,42(11):3028−3034.
GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523−5527.
doi: 10.1021/j100377a021
FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian 09 Rev. D. 01[M]. Wallingford, CT. 2009.
FU Xian-cai. Physical Chemistry[M]. 5th ed. Beijing: Higher Education Press, 2005.
CHEN P, GU M Y, CHEN G, LIU F S, LIN Y Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,192(9):1682−706.
TIAN Xiang-hong. Study on coke oxidation with density functional theory[D]. Zhengzhou: Zhengzhou University, 2019.
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026