Citation: Sai ZHOU, Hu LIU, Peng-fei YU, Mao-bo YUAN, Jing-wen XUE, De-fu CHE. Study on the mechanism of oxidation of nitrogen-containing char by CO2 based on density functional theory[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 19-27. doi: 10.19906/j.cnki.JFCT.2021061 shu

Study on the mechanism of oxidation of nitrogen-containing char by CO2 based on density functional theory

Figures(11)

  • In order to obtain the NO formation mechanism during the coal combustion, the heterogeneous oxidation of nitrogen-containing char by CO2 were investigated based on density functional theory. Simplified char models containing pyrrole nitrogen or pyridine nitrogen were selected as the carbonaceous surfaces. Geometric optimizations were carried out at the B3LYP-D3/6-31G(d) level. Energies of optimized geometries were calculated at the B3LYP-D3/def2-TZVP level. The results show that CO2 oxidation of nitrogen-containing char is composed of three stages: namely CO2 adsorption, CO desorption and NO desorption. In the reaction of CO2 heterogeneous oxidation of pyrrole nitrogen-containing char, CO2 molecules tend to absorb in the C−O−down mode (C−C bonding, N−O bonding) to form a five-membered heterocyclic structure containing nitrogen and oxygen atoms. Then, the surface carbonyl groups and N(O) are formation as the C−O bonds of the original CO2 molecules in the five-membered ring broken to desorb CO and NO, respectively. The reaction is 401.2 kJ/mol endothermic, and the highest energy barrier is 197.6 kJ/mol. In the reaction of CO2 heterogeneous oxidation of pyridine nitrogen-containing char, CO2 molecules tend to form six-membered heterocyclic ring containing nitrogen and oxygen atoms after adsorption in the C−O−down and C−C bonding and C−O bonding mode. And then CO and NO molecules are desorbed. The reaction is 598.6 kJ/mol endothermic, and the energy barrier of rate-determining step is 292.0 kJ/mol.
  • 加载中
    1. [1]

      National Bureau of Statistics of China. China Statistical Yearbook[J]. Beijing: China Statistics Press, 2020.

    2. [2]

      MAO Hong-jun, LI Yue-ning, LIN Ying-chao, WANG Ting, LI Wei-zun, JU Mei-ting, ZHU Fu-dong. Overview of advances in emission control technologies for nitric oxides from biomass boilers[J]. Chin J Eng,2019,41(1):4−14.

    3. [3]

      DE SOETE G G, CROISET E, RICHARD J R. Heterogeneous formation of nitrous oxide from char-bound nitrogen[J]. Combust Flame,1999,117(1):140−154.

    4. [4]

      MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog Energy Combust Sci,1989,15(4):287−338.  doi: 10.1016/0360-1285(89)90017-8

    5. [5]

      WINTER F, WARTHA C, LÖFFLER G, HOFBAUER H. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions[J]. Symp (Int) Combust,1996,26(2):3325−3334.  doi: 10.1016/S0082-0784(96)80180-9

    6. [6]

      CHE De-fu. Thermal Coal-N Transformation and Nitrogen oxide Generation[M]. Xi'an: Xi'an Jiaotong University Press, 2013.

    7. [7]

      GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci,2003,29(2):89−113.  doi: 10.1016/S0360-1285(02)00031-X

    8. [8]

      ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of CO and NO desorption from oxidation of nitrogen-containing char by oxygen[J]. J China Coal Soc,2011,36(1):129−134.

    9. [9]

      ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012.

    10. [10]

      WANG X B, HU Z F, DENG S H, XIONG Y Y, TAN H Z. Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace[J]. Energy Procedia,2014,61:2331−2334.  doi: 10.1016/j.egypro.2014.11.1196

    11. [11]

      SALZMANN R, NUSSBAUMER T. Fuel staging for NOx reduction in biomass combustion: experiments and modeling[J]. Energy Fuels, 15(3): 575–582.

    12. [12]

      ZHANG Tai, LIU Zhao-hui, HUANG Xiao-hong, CHEN Song-tao, WANG Yong, PI Li-gang, ZHENG Chu-guang. Experimental study of gaseous pollutant formation and emission on 3 MWth oxy-fuel pilot test facility[J]. J Eng Therm,2014,35(8):1652−1655.

    13. [13]

      OHTSUKA Y, WU Z. Nitrogen release during fixed-bed gasification of several coals with CO2: Factors controlling formation of N2[J]. Fuel,1999,78(5):521−527.  doi: 10.1016/S0016-2361(98)00187-2

    14. [14]

      PARK D–C, DAY S J, NELSON P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O[J]. Proc Combust Ins,2005,30(2):2169−2175.  doi: 10.1016/j.proci.2004.08.051

    15. [15]

      ZHANG H, JIANG X M, LIU J X. Updated effect of carbon monoxide on the interaction between NO and char bound nitrogen: A combined thermodynamic and kinetic study[J]. Combust Flame,2020,220:107−118.  doi: 10.1016/j.combustflame.2020.06.032

    16. [16]

      ZHANG H, LIU J X, LIU J G, LUO L, JIANG X M. DFT study on the alternative NH3 formation path and its functional group effect[J]. Fuel,2018,214(FEB):108−114.

    17. [17]

      ZHANG H, LIU J X, WANG X Y, LUO L, JIANG X M. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel,2017,203(SEP):715−724.

    18. [18]

      LIU Yan-hua, CHE De-fu, LI Yin-tang, HUI Shi-en, XU Tong-mo. X-Ray photoelectron spectroscopy determination of the forms of nitrogen in Tongchuan coal and its chars[J]. J Xi'an Jiaotong Univ,2001,35(7):661−665.  doi: 10.3321/j.issn:0253-987X.2001.07.001

    19. [19]

      ZHAO S H, SUN R Y, BI X L, PAN X J, SU Y. Density functional theory study of the heterogenous interaction between char-bound nitrogen and CO2 during oxy-fuel coal combustion[J]. Combust Flame,2020,216:136−145.  doi: 10.1016/j.combustflame.2020.02.026

    20. [20]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite Selection of molecular system and model chemistry[J]. Carbon,1998,36(7−8):1061−1070.  doi: 10.1016/S0008-6223(98)00078-5

    21. [21]

      LIU Ye-ming. Study on NOx conversion mechanism under O2/CO2 combustion with high concentration of CO2[D]. Yangzhou: Yangzhou University, 2018.

    22. [22]

      STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, FRISCH M J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623−11627.  doi: 10.1021/j100096a001

    23. [23]

      SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame,2005,143(4):629−643.  doi: 10.1016/j.combustflame.2005.08.026

    24. [24]

      ZHU Z H, FINNERTY J, LU G Q, YANG R T. A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations[J]. Energy Fuels,2002,16(6):1359−1368.  doi: 10.1021/ef0200020

    25. [25]

      ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage,2014,83(JUL):167−176.

    26. [26]

      MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char–bound nitrogen during combustion[J]. J Phys Chem A,2000,104(36):8409−8417.  doi: 10.1021/jp001045p

    27. [27]

      STEFAN G. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,15(132):1−19.

    28. [28]

      ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on zigzag carbonaceous model[J]. J China Coal Soc,2017,42(11):3028−3034.

    29. [29]

      GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523−5527.  doi: 10.1021/j100377a021

    30. [30]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian 09 Rev. D. 01[M]. Wallingford, CT. 2009.

    31. [31]

      FU Xian-cai. Physical Chemistry[M]. 5th ed. Beijing: Higher Education Press, 2005.

    32. [32]

      CHEN P, GU M Y, CHEN G, LIU F S, LIN Y Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,192(9):1682−706.

    33. [33]

      TIAN Xiang-hong. Study on coke oxidation with density functional theory[D]. Zhengzhou: Zhengzhou University, 2019.

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    15. [15]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    16. [16]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    19. [19]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(0)
  • Abstract views(757)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return