Citation: Tong CHANG, Rui-jing MA, Chang SONG. Effect of support factors on the selective catalytic oxidation of benzyl alcohol over Au/BN catalyst[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 109-113. doi: 10.19906/j.cnki.JFCT.2021060 shu

Effect of support factors on the selective catalytic oxidation of benzyl alcohol over Au/BN catalyst

  • Corresponding author: Chang SONG, songchang@sxicc.ac.cn
  • Received Date: 19 March 2021
    Revised Date: 17 May 2021

Figures(5)

  • The selective oxidation of primary alcohols represents a premier route for the synthesis of aldehydes as intermediates of multiple commercial fine chemicals such as drugs and perfumes. In particular, catalytically selective oxidation of primary alcohol in use of oxygen is of great interest, owning to its high efficiency, solvent-free, and easy separation. As such, choosing this route to pursue desired atomic economy has been an essential topic of common concern in both academic and industrial circles in recent years. Boron nitride with graphite like structure is a new catalyst developed in recent years, which has the characteristics of stability and good thermal conductivity. In this contribution, three kinds of boron nitride (BN) with different structural characteristics were used as carriers to support Au nano metal for selective oxidation of benzyl alcohol. It is found that the crystallinity and specific surface area of the carriers have a great influence on the size of active phase Au. The specific surface area of ​​Au/BN500 is four times higher than those of the Au/BN600 and Au/BN700. Compared with Au/BN700, Au/BN500 catalyst has better dispersion and smaller particle size (13 vs. 3.2 nm). The catalytic activity of Au/BN500 is about twice as much as those of the other two, and about 30% activity is lost within 5 h. The results in this paper provide enriched experimental and theoretical references for rational design and development of novel high-performance boron nitride-based oxidative dehydrogenation catalysts.
  • 加载中
    1. [1]

      DELLA PINA C, FALLETTA E, PRATI L, ROSSI M. Selective oxidation using gold[J]. Chem Soc Rev,2008,37(9):2077−2095.  doi: 10.1039/b707319b

    2. [2]

      CHEN J, ZHANG Q H, WANG Y, WAN H L. Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols[J]. Adv Synth Catal,2008,350(3):453−464.  doi: 10.1002/adsc.200700350

    3. [3]

      RODRIGUEZ-GOMEZ A, HOLGADO J P, CABALLERO A. cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde[J]. ACS Catal,2017,7(8):5243−5247.  doi: 10.1021/acscatal.7b01348

    4. [4]

      ADNAN R H, GOLOVKO V B. Benzyl alcohol oxidation using gold catalysts derived from Au- clusters on TiO2[J]. Catal Lett,2019,149(2):449−455.  doi: 10.1007/s10562-018-2625-8

    5. [5]

      DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, CARLEY A, PRATI L, HUTCHING G J. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique[J]. Catal Today,2007,122(3/4):317−324.

    6. [6]

      CHEN Y, WANG H, LIU C J, ZENG Z Y, ZHANG H, ZHOU C M, JIA X L, YANG Y H. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol[J]. J Catal,2012,289:105−117.  doi: 10.1016/j.jcat.2012.01.020

    7. [7]

      ZHOU Q Y, ZHOU C Y, ZHOU Y H, HONG W, ZOU S H, GONG X Q, LIU J J, XIAO L P, FAN J. More than oxygen vacancies: A collective crystal- plane effect of CeO2 in gas- phase selective oxidation of benzyl alcohol[J]. Catal Sci Technol,2019,9(11):2960−2967.

    8. [8]

      GAO Y, ZHANG L, VAN HOOF A J F, FRIEDRICH H, HENSEN E J M. A robust Au/ZnCr2O4 catalyst with highly dispersed gold nanoparticles for gas-phase selective oxidation of cyclohexanol to cyclohexanone[J]. ACS Catal,2019,9(12):11104−11115.  doi: 10.1021/acscatal.9b02821

    9. [9]

      LIU P, HENSEN E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde[J]. J Am Chem Soc,2013,135(38):14032−14035.  doi: 10.1021/ja406820f

    10. [10]

      HOU W B, DEHM N A, SCOTT R W J. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts[J]. J Catal,2008,253(1):22−27.  doi: 10.1016/j.jcat.2007.10.025

    11. [11]

      DAI Y, YAN X, TANG Y, LIU X, XIAO L, FAN J. Low-temperature gas-phase oxidation of benzyl alcohol on mesoporous K-Cu-TiO2through oxidative dehydrogenation[J]. ChemCatChem,2012,4(10):1603−1610.

    12. [12]

      ZHAO G, LI Y, ZHANG Q, DENG M, CAO F, LU Y. Galvanic deposition of silver on 80-μm-Cu-fiber for gas-phase oxidation of alcohols[J]. AlChE J,2014,60(3):1045−1053.  doi: 10.1002/aic.14295

    13. [13]

      MAO J, DENG M, CHEN L, LIU Y, LU Y. Novel microfibrous-structured silver catalyst for high efficiency gas-phase oxidation of alcohols[J]. AlChE J,2010,56(6):1545−1556.  doi: 10.1002/aic.12088

    14. [14]

      JACOBSEN C, BORON NITRIDE. A novel support for ruthenium-based ammonia synthesis catalysts[J]. J Catal,2001,200(1):1−3.  doi: 10.1006/jcat.2001.3200

    15. [15]

      OHASHI T, WANG Y, SHINADA S. Preparation and high catalytic performance of hollow BN spheres-supported Ni for hydrogen production from methanol[J]. J Mater Chem,2010,20(24):5129−5135.  doi: 10.1039/c0jm00412j

    16. [16]

      POSTOLE G, GERVASINI A, GUIMON C, AUROUX A, BONNETOT B. Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts[J]. J Phys Chem B,2006,110(25):12572−12580.  doi: 10.1021/jp060183x

    17. [17]

      LIN C A, WU J C S, PAN J W, YEH C T. Characterization of boron-nitride-supported Pt catalysts for the deer oxidation of benzene[J]. J Catal,2002,210(1):39−45.  doi: 10.1006/jcat.2002.3638

    18. [18]

      UOSAKI K, ELUMALAI G, NOGUCHI H, MASUDA T, LYALIN A, NAKAYAMA A, TAKETSUGU T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof[J]. J Am Chem Soc,2014,136(18):6542−6545.  doi: 10.1021/ja500393g

    19. [19]

      WANG L, HANG R, XU Y, GUO C, QIAN Y. From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials[J]. RSC Adv,2014,4(27):14233.  doi: 10.1039/c3ra47005a

    20. [20]

      CHUBAROV M, PEDERSEN H, HÖGBERG H, CZIGÄNY Z, GARBRECHT M, HENRY A. Polytype pure sp2-BN thin films as dictated by the substrate crystal structure[J]. Chem Mater,2015,27(5):1640−1645.  doi: 10.1021/cm5043815

    21. [21]

      SUZUKI K, YAMAGUCHI T, MATSUSHITA K, IITSUKA C, MIURA J, AKAOGI T, ISHIDA H. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure[J]. ACS Catal,2013,3(8):1845−1849.  doi: 10.1021/cs4004084

    22. [22]

      YAP Y K. B−C−N Nanotubes and Related Nanostructures[M].Berlin: Springer, 2009.

    23. [23]

      DELLA PINA C, FALLETTA E, ROSSI M. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst[J]. J Catal,2008,260(2):384−386.  doi: 10.1016/j.jcat.2008.10.003

    24. [24]

      HAO C, ZHENZHEN Y, ZIHAO Z, ZITAO C, MIAOFANG C, SONG W, JIE F, SHENG D. Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation[J]. Angew Chem Int Ed,2019,58:1−6.  doi: 10.1002/anie.201813481

    25. [25]

      LEI W W, PORTEHAULT D, LIU D, QIN S, CHEN Y. Porous boron nitride nanosheets for effective water cleaning[J]. Nat Commun,2013,4:1777.

    26. [26]

      LIU M, TAN L, ZHOU B, LI L, MI Z, LI C J. Group-III nitrides catalyzed transformations of organic molecules[J]. Chem,2021,7(1):64−92.  doi: 10.1016/j.chempr.2020.09.014

    27. [27]

      XIANGZHAN M, ZENGXI L, YONGQIANG Z, RUIYI Y, HUI W. Deactivation behavior and aggregation mechanism of supported Au T nanoparticles in the oxidation of monoethanolamine to glycine[J]. Catal Commun,2020,(146):106127.

    28. [28]

      ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87.  doi: 10.1038/nature19786

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    13. [13]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(538)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return