Density functional theory study on the conversion path of leucine by non-thermal plasma
- Corresponding author: Xian-chun LI, xianchunli@ustl.edu.cn
Citation:
Yue-hui LI, Xian-chun LI, Fan-rui MENG, Qing WANG, Huan-ran WANG, Yu-jie GE. Density functional theory study on the conversion path of leucine by non-thermal plasma[J]. Journal of Fuel Chemistry and Technology,
;2021, 49(2): 247-256.
doi:
10.19906/j.cnki.JFCT.2021038
LU Ping, XIE Jia-le, ZHANG Xue-wei, WANG Jia-yi, FENG Zhao-yu, SONG Xin, BU Yu-wei. Release characteristics of semi-volatile heavy metals from sludge/coal mixed combustion in O2/CO2 atmosphere[J]. J Fuel Chem Technol,2020,48(5):533−542.
doi: 10.3969/j.issn.0253-2409.2020.05.003
KOENIG A, KAY J N, WAN I M. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Sci Technol,1996,34(3):533−540.
LIU Wei. Study on characteristics of sewage sludge gasification[D]. Hangzhou: Zhejiang University, 2011.
LI Fan, ZHU Li-hua, XU Feng. Dielectric barrier discharge plasma methane/steam reforming hydrogen production[J]. J Fuel Chem Technol,2019,47(5):566−573.
doi: 10.3969/j.issn.0253-2409.2019.05.007
DU C M, WU J. , Ma D Y, LIU Y, QIU P P, QIU R L, LIAO S S, GAO D. Gasification of corn cob using non-thermal arc plasma[J]. Int J Hydrog Energy,2015,40(37):12634−12649.
doi: 10.1016/j.ijhydene.2015.07.111
SUN Shi-yi. Discharge plasma enhanced treatment sludge reduction and heavy metal removal[D]. Lanzhou: Northwest Normal University, 2018.
CHEN S S, DONG B, DAI X H, WANG H Y, LI N, YANG D H. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Manage,2019,88:309−318.
doi: 10.1016/j.wasman.2019.03.060
ZHENG Yan, LI Ming, ZHU Xi-feng. Aromatics and olefines were prepared by fast catalytic pyrolysis of municipal sewage sludge[J]. CIESC Jo,2016,67(11):4802−4807.
PENG C, ZHAI Y B, HORNUNG A, WANG B, LI S H, WANG T F, LI C T, ZHU Y. In-depth comparison of morphology, microstructure, and pathway of char derived from sewage sludge and relevant model compounds[J]. Waste Management,2020,102:432−440.
doi: 10.1016/j.wasman.2019.11.007
AZADI P, AFIF E, FOROUHI H, DAI T S, AZADI F. , FARNOOD R. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts[J]. Appl Catal B: Environ.,2013,134-135:265−273.
doi: 10.1016/j.apcatb.2013.01.022
WANG C Y, FAN Y J, HORNUNG U, ZHU W, DANMEN N. Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: Effect of organic matter composition and experiments with model compounds[J]. J Clean Prod,2020,242:1−9.
WEI F, CAO J P, ZHAO X Y, REN J, GU B, WEI X Y. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids[J]. Fuel,2018,218:148−154.
doi: 10.1016/j.fuel.2018.01.025
SUBRAHMANYAM P V R, SASTRY C A, RAO A V S P, PILLAI S C. Amino acids in sewage sludges[J]. J Water Pollut Control Fed,1960,32(4):344−350.
ZHANG Jun. Nitrogen conversion pathways and control strategies in the process of microwave pyrolysis of sewage sludge[D]. Harbin: Harbin Institute of Technology, 2013.
LI J, WANG Z Y, YANG X, HU L, LIU Y W, WANG C X. Decomposing or subliming? An investigation of thermal behavior of l-leucine[J]. Thermochim Acta,2006,447(2):147−153.
doi: 10.1016/j.tca.2006.05.004
ZHAO S H, BI X L, SUN R Y, NIU M M, PAN X J. Density functional theory and experimental study of cellulose initial degradation stage under inert and oxidative atmosphere[J]. J Mol Struct,2020,1204:1−10.
YANG X X, FU Z W, HAN D D, ZHAO Y Y, LI R, WU Y L. Unveiling the pyrolysis mechanisms of cellulose: Experimental and theoretical studies[J]. Renewable Energy,2020,147:1120−1130.
doi: 10.1016/j.renene.2019.09.069
ZHANG Y Y, LIU C, XIE H. Mechanism studies on β-d-glucopyranose pyrolysis by density functional theory methods[J]. J Anal Appl Pyrolysis,2014,105:23−34.
doi: 10.1016/j.jaap.2013.09.016
HUANG X Y, CHENG D G, CHEN F Q, ZHAN X L. A density functional theory study on the decomposition of aliphatic hydrocarbons and cycloalkanes during coal pyrolysis in hydrogen plasma[J]. J Energy Chem,2015,24(1):65−71.
doi: 10.1016/S2095-4956(15)60285-6
HUANG Jin-bao, WU Shu-bin, LEI Ming, CHENG Hao, LIANG Jia-jin, TONG Hong. Quantum chemistry study on the pyrolysis mechanism of lignin dimer model compounds[J]. J Fuel Chem Technol,2015,43(11):1334−1343.
doi: 10.3969/j.issn.0253-2409.2015.11.008
CHENG Xiao-cai, HUANG Jin-bao, PAN Gui-ying, TONG Hong, CAI Xun-ming. Theoretical study on the thermal degradation mechanism of polystyrene[J]. J Fuel Chem Technol,2019,47(7):884−896.
doi: 10.3969/j.issn.0253-2409.2019.07.014
HUANG X Y, GU J M, CHENG D G, CHEN F Q, ZHAN X L. Pathways of liquefied petroleum gas pyrolysis in hydrogen plasma: A density functional theory study[J]. J Energy Chem,2013,22(3):484−492.
doi: 10.1016/S2095-4956(13)60063-7
CHEN L, CHENG D G, CHEN F Q, ZHAN X L. A density functional theory study on the conversion of polycyclic aromatic hydrocarbons in hydrogen plasma[J]. Int J Hydrog Energy,2020,45(1):309−321.
doi: 10.1016/j.ijhydene.2019.10.208
HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol,2013,41(6):657−666.
HUANG X Y, CHENG D G, CHEN F Q, ZHAN X L. The decomposition of aromatic hydrocarbons during coal pyrolysis in hydrogen plasma: A density functional theory study[J]. Int J Hydrog Energy,2012,37(23):18040−18049.
doi: 10.1016/j.ijhydene.2012.09.006
DUAN Yu, CHENG Hao, WU Shu-bin. Study on the effect of modification of Cα-OH group of lignin dimer on its pyrolysis homocracking process based on density functional theory[J]. J Fuel Chem Technol,2019,47(12):1440−1448.
doi: 10.3969/j.issn.0253-2409.2019.12.004
MUDEDLA S K, KUMAR C V S, SURESH A, BASKAR P, DASH P S, SUBRAMANIAN V. Water catalyzed pyrolysis of oxygen functional groups of coal: A density functional theory investigation[J]. Fuel,2018,233:328−335.
doi: 10.1016/j.fuel.2018.06.057
HUANG J B, LIU C, TONG H, LI W M, WU D. A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin[J]. Comput Theor Chem,2014,1045:1−9.
doi: 10.1016/j.comptc.2014.06.009
ZHANG Xiao-xing, HU Xiong-xiong, XIAO Han-yan. Experimental and simulation study of SF6 degradation by dielectric barrier discharge plasma[J]. Proc CSEE,2017,37(8):2455−2465.
SIMMONDS P G, MEDLEY E E, RATCLIFF M A, Jr, SHULMAN G P. Thermal decomposition of aliphatic monoamino-monocar boxylic acids[J]. Anal Chem,1972,44(12):2060−2066.
doi: 10.1021/ac60320a040
DEAN, A. M. Predictions of pressure and temperature effects upon radical addition and recombination reactions[J]. J. Phys. Chem. A,1985,89(21):4600−4608.
doi: 10.1021/j100267a038
WESTBROOK C K, DRYER F L, SCHUG K P. Comprehensive mechanism for the pyrolysis and oxidation of ethylene[J]. Symp Combustion,1982,19(1):153−166.
doi: 10.1016/S0082-0784(82)80187-2
TOWFIGHI J, NIAEI A, KARIMZADEH R, SAEDI G. Systematics and modelling representations of LPG thermal cracking for olefin production[J]. Korean J Chem Eng,2006,23(1):8−16.
doi: 10.1007/BF02705685
WANG Li. Study on the synergistic effect of plasma-catalyzed ammonia decomposition for hydrogen production[D]. Dalian: Dalian University of Technology, 2013.
LIU Guang-yi. Research on catalytic pyrolysis of sludge to produce hydrocarbon compounds and conversion route[D]. Harbin: Harbin Institute of Technology, 2016.
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018