Citation: Tian-hua YANG, Jia-xing LIU, Bing-shuo LI, Ying-mei ZHAI, Jian WANG, Bo-lin TONG. Effect of Ca modified HZSM-5 zeolites on catalytic pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 137-144. doi: 10.19906/j.cnki.JFCT.2021033 shu

Effect of Ca modified HZSM-5 zeolites on catalytic pyrolysis of oil shale

  • Corresponding author: Tian-hua YANG, thyang@sau.edu.cn
  • Received Date: 11 December 2019
    Revised Date: 17 November 2020

Figures(8)

  • The catalytic behaviors of Ca-modified HZSM-5 during oil shale pyrolysis process were investigated in a tubular rector and by TG-MS-FTIR. The physicochemical properties of the molecular sieve were characterized by BET, NH3-TPD, and TG. The results show that the molecular sieve can significantly increase yields of C1−4 aliphatic hydrocarbons and reduce their evolution temperatures. After modified, Ca/HZSM-5 can reduce yields of CO2, increase yields of shale oil and decrease lengths of aliphatic chains in shale oil. But Ca/HZSM-5 has a strong catalytic effect on aromatization. Brönsted acid sites have an obvious catalytic effect on aliphatic hydrocarbons, while Lewis acid sites are more targeted at aromatization process of pyrolysis products.
  • 加载中
    1. [1]

      YOU Y Y, HAN X X, WANG X Y, JIANG X M. Evolution of gas and shale oil during oil shale kerogen pyrolysis based on structural characteristics[J]. J Anal Appl Pyrolsis,2019,138:203−210.

    2. [2]

      TARIK S, LIN Q Y, BRANKOB, MARTIN J B. Microstructural imaging and characterization of oil shale before and after pyrolysis[J]. Fuel,2017,197:562−574.

    3. [3]

      LIU T L, CAO J P, ZHAO X, WANG J, REN X, FAN X, ZHAO Y, WEI X. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Process Technol,2017,160:19−26.

    4. [4]

      SHI W J, WANG Z, SONG W L, LI S G, LI X Y. Pyrolysis of Huadian oil shale under catalysis of shale ash[J]. J Anal Appl Pyrolsis,2017,123:160−164.

    5. [5]

      ZHANG H, LIU J, KANG Z Q, YANG D. Experimental research of the pyrolytic properties and mineral components of Bogda oil shale, China[J]. Oil Shale,2018,35(3):214.

    6. [6]

      CHEN H, CHENG H, ZHOU F, CHEN K Q, QIAO K, LU X Y, OUYANG P K, FU J. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J]. J Anal Appl Pyrolsis,2018,131:76−84.

    7. [7]

      ZHANG C D, GEUNJAE K, HAEGU P, KIWON J, LEE Y, SEOK C K, SUNGTAK K. Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: Effects of alkali treatment on catalytic performance[J]. Microporous Mesoporous Mater,2019,276:292−301.

    8. [8]

      ZHANG Z Z, CHANG H, GAO T, ZHANG J B, SUN M, XU L, MA X X. Catalytic upgrading of coal pyrolysis volatiles over metal-loaded HZSM-5 catalysts in a fluidized bed reactor[J]. J Anal Appl Pyrolsis,2019,139:31−39.

    9. [9]

      DAI M Q, YU Z S, FANG S W, MA X Q. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale[J]. Energ Convers Manage,2019,192:1−10.

    10. [10]

      ZHANG B, ZHONG Z P, CHEN P, RUAN R. Microwave-assisted catalytic fast co-pyrolysis of Ageratinaadenophora and kerogen with CaO and ZSM-5[J]. J Anal Appl Pyrolsis,2017,127:246−257.

    11. [11]

      GU B, CAO J P, WEI F, ZHAO X Y, REN X Y, ZHU C, GUO Z X, BAI J, SHEN W Z, WEI X Y. Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5[J]. Fuel,2019,244:151−158.

    12. [12]

      CHEN L, ZENG C, GUO X, MAO Y, ZHANG Y, ZHANG X, LI W H, LONG Y, ZHU H, B EITENEER, VLADIMIR M Z. Gas evolution kinetics of two coal samples during rapid pyrolysis[J]. Fuel Process Technol,2010,91:848−852.

    13. [13]

      SHI L, LIU Q Y, ZHOU B, GUO X J, LI Z K, CHENG X J, YANG R, LIU Z Y. Interpretation of methane and hydrogen evolution in coal pyrolysis from the bond cleavage perspective[J]. Energy Fuels,2017,31(1):429−437.

    14. [14]

      PORADA S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel,2004,83:1191−1196.

    15. [15]

      HOU X, NI N, WANG Y, ZHU W J, QIU Y, DIAO Z H, LIU G Z, ZHANG X W. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. J Anal Appl Pyrolsis,2019,138:270−280.

    16. [16]

      ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, DELIMITIS A, LAPPAS A A, TRIANTAFYLLIDIS K S. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Appl Catal B: Environ,2012,127:281−290.

    17. [17]

      MA YUE, LI SHU-YUAN, WANG JUAN, FANG CHAO-HE. Mechanism of oil shale pyrolysis under high water[J]. J Fuel Chem Technol,2011,39(12):881−886.  doi: 10.3969/j.issn.0253-2409.2011.12.001

    18. [18]

      REN X, CAO J, ZHAO X, YANG Z, LIU T, FAN X, ZHAO Y, WEI X. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40.

    19. [19]

      TRIPATHI A K, OJHA D K, VINU R. Selective production of valuable hydrocarbons from waste motorbike engine oils via catalytic fast pyrolysis using zeolites[J]. J Anal Appl pyrolsis,2015,114:281−292.

    20. [20]

      JI X, LIU B, MA W, CHEN G, YAN B, CHENG Z. Effect of MgO promoter on Ni-Mg/ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus[J]. J Anal Appl Pyrolsis,2017,123:278−283.

    21. [21]

      YOU Y, HAN X, LIU J, JIANG X. Structural characteristics and pyrolysis behaviors of huadian oil shale kerogens using solid-state 13 C NMR, Py-GCMS and TG[J]. J Therm Anal Calorim,2017,131:1−11.

    22. [22]

      LI S, CHEN J, HAO T, LIANG W, LIU X, SUN M, MA X. Pyrolysis of Huang Tu Miao coal over faujasite zeolite and supported transition metal catalysts[J]. J Anal Appl Pyrolsis,2013,102:161−169.

    23. [23]

      BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TASTUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J Catal,2017,353:1−10.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    3. [3]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(20)
  • Abstract views(2568)
  • HTML views(381)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return