Citation: Yun-peng ZHAO, Xing-gang SI, Wei ZHAO, Jing-pei CAO, Xian-yong WEI. Catalytic hydrodeoxygenation of lignite-derived model compounds to monomeric hydrocarbons over Co/Al2O3[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 160-167. doi: 10.19906/j.cnki.JFCT.2021032 shu

Catalytic hydrodeoxygenation of lignite-derived model compounds to monomeric hydrocarbons over Co/Al2O3

Figures(9)

  • A Co/Al2O3 catalyst was synthesized by facile calcination and hydrogen reduction of a cobalt-aluminum hydrotalcite CoAl-LDH, and the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photon spectroscopy (XPS) were used to characterize the physical and chemical properties of the precursor and catalysts. Using 2-naphthyl ether as the lignite derived model compound, the catalytic performance of Co/Al2O3 on the hydrodeoxygenation of 2-naphthyl ether to monomeric hydrocarbons was investigated. The results show that Co/Al2O3-700 has the highest hydrodeoxygenation activity. Under the conditions of 250 ℃, 2 MPa of initial H2 pressure and90 min of holding time, the 2-naphthyl ether is completely converted to monomeric hydrocarbons (decalin and tetralin), in which the 2-naphthyl ether is first converted to 6,6'-oxybis (1,2,3,4-tetrahydronaphthalene) by hydrogenation and then the tetralin and 5,6,7,8-tetrahydronaphthalene-2-naphthol are formed by the cleavage of C−O bond. In addition, Co/Al2O3-700 also shows high activity for the hydrodeoxygenation of lignite-derived benzyl ether and phenyl ether model compounds.
  • 加载中
    1. [1]

      SHUI Heng-fu, LIU Jian-long, WANG Zhi-cai, ZHANG De-xiang. Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres[J]. J Fuel Chem Technol,2009,37(3):257−261.  doi: 10.3969/j.issn.0253-2409.2009.03.001

    2. [2]

      LIU Peng, ZHOU Yang, LU Xi-lan, WANG Lan-lan, PAN Tie-ying, ZHANG De-xiang. Structural evolution of Xianfeng lignite during hydrothermal treatment[J]. J Fuel Chem Technol,2016,44(2):129−137.  doi: 10.3969/j.issn.0253-2409.2016.02.001

    3. [3]

      LI Wen-ying, LI Wang, FENG Jie. An overview on issues for lignite direct liquefaction[J]. J China Coal Soc,2020,45(1):414−423.

    4. [4]

      HU Fa-ting, WANG Xue-yun, MAO Xue-feng, LI Jun-fang, ZHAO Peng. Research progress and prospect of direct liquefaction technology from coal to oil[J]. Clean Coal Technol,2020,26(1):99−109.

    5. [5]

      WANG J P, LI G Y, GUO R, LI A Q, LIANG Y H. Theoretical and Experimental Insight into Coal Structure: Establishing a Chemical Model for Yuzhou Lignite[J]. Energy Fuels,2017,31:124−132.  doi: 10.1021/acs.energyfuels.6b01854

    6. [6]

      MATHEWS J P, CHAFFEE A L. The molecular representations of coal-A review[J]. Fuel,2012,96:1−14.  doi: 10.1016/j.fuel.2011.11.025

    7. [7]

      ZHANG J W, LU G P, CAI C. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs[J]. Green Chem,2017,19:4538−4543.  doi: 10.1039/C7GC02087B

    8. [8]

      KIM J K, LEE J K, KANG K H, SONG J C, SONF I K. Selective cleavage of C-O bond in benzyl phenyl ether to aromatics over Pd-Fe bimetallic catalyst supported on ordered mesoporous carbon[J]. Appl Catal A: Gen,2015,498:142−149.  doi: 10.1016/j.apcata.2015.03.034

    9. [9]

      XIE T, CAO J P, ZHU C, ZHAO X Y, ZHAO M, ZHAO Y P, WEI X Y. Selective cleavage of C-O bond in benzyl phenyl ether over Pd/AC at room temperature[J]. Fuel Process Technol,2019,188:190−196.  doi: 10.1016/j.fuproc.2019.02.022

    10. [10]

      SONG Q L, ZHAO Y P, WU F P, LI G S, FAN X, WANG R Y, CAO J P, WEI X Y. Selective hydrogenolysis of lignin-derived aryl ethers over Co/C@N catalysts[J]. Renewable Energy,2020,148:729−738.  doi: 10.1016/j.renene.2019.10.160

    11. [11]

      ZHANG Yin, GUO Jian-jian, WANG Jie, LI Hai-tao, ZHAO Yong-xiang. Preparation of Ni-Al2O3 Catalysts Derived from Hydrotalcite and Its Catalytic Performance for Hydrogenation of Levulinic Acid[J]. Chem J Chin Univ,2019,40(8):1686−1696.  doi: 10.7503/cjcu20190068

    12. [12]

      LONG X D, SUN P, LI Z L, LANG R, XIA C G, LI F W. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone[J]. Chin J Catal.,2015,36:1512−1518.  doi: 10.1016/S1872-2067(15)60934-2

    13. [13]

      CAI Zhong-shun, ZHU Zi-hui, PAN Jing, SUN Yan-yan, XI Ling-ling, HOU Zhao-yin. Application of Co-Al Catalysts in Hydrogenation of Glycidol to 1, 3-Propanediol[J]. Chem J Chin Univ,2020,41(8):1818−1825.  doi: 10.7503/cjcu20200236

    14. [14]

      LIANG S S, HOU Y C, WU W Z, LI L, REN S H. New insights into the primary reaction products of Naomaohu coal via breaking weak bonds with supercritical ethanolysis[J]. Energy Fuels,2019,33:6294−6301.  doi: 10.1021/acs.energyfuels.9b01154

    15. [15]

      LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153: 176-182.

    16. [16]

      SANATI S, REZVANI Z. 3-g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors[J]. Chem Eng J,2019,(362):743−757.

    17. [17]

      JIANG L, GUO H W, LI C Z, ZHOU P, ZHANG Z H. Selective cleavage of lignin and lignin model compounds without external hydrogen catalyzed by heterogeneous nickel catalysts[J]. Chem Sci,2019,10:4458−4468.  doi: 10.1039/C9SC00691E

    18. [18]

      SHIMURA K, MIYAZAWA T, HANAOKA T, HIRATA S. Fischer-Tropsch synthesis over alumina supported cobalt catalyst: Effect of promoter addition[J]. Appl Catal A: Gen,2015,494:1−11.  doi: 10.1016/j.apcata.2015.01.017

    19. [19]

      SONG T, REN P, DUAN Y N, WANG Z Z, CHEN X F, YANG Y. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes[J]. Green Chem,2018,20:4629−4637.  doi: 10.1039/C8GC01374H

    20. [20]

      ZHAO H Y, HAO J X, BAN Y P, SHA Y F, H. ZHOU H C, LIU Q S. Novel and efficient cobalt catalysts synthesized by one-step solution phase reduction for the conversion of biomass derived ethyl levulinate[J]. Catal Today,2019,319:145−154.  doi: 10.1016/j.cattod.2018.08.011

    21. [21]

      YAO Z W, ZHANG X H, PENG F, YU H, WANG H J, YANG J. Novel highly efficient alumina-supported cobalt nitridecatalyst for preferential CO oxidation at high temperatures[J]. Int J Hydrogen Energy,2011,36:1955−1959.  doi: 10.1016/j.ijhydene.2010.11.082

    22. [22]

      WANG H L, RUAN H, FENG M Q, QIN Y L, JOB H, LUO L L, WANG C M, ENGELHARD M H, KUHN E, CHEN X W, TUCKER M P, YANG B. One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on zeolite Y[J]. ChemSusChem,2017,10:1846−1856.  doi: 10.1002/cssc.201700160

    23. [23]

      HE J Y, ZHAO C, LERCHER J A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase[J]. J Am Chem Soc,2012,134:20768−20775.  doi: 10.1021/ja309915e

    24. [24]

      ZHANG J G, TEO J, CHEN X, ASAKURA H, TANAKA T, TERAMURA K, YAN N. A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water[J]. ACS Catal,2014,4:1574−1583.  doi: 10.1021/cs401199f

    25. [25]

      SI X G, ZHAO Y P, SONG Q L, CAO J P, WANG R Y, WEI X Y. Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/N-C catalyst[J]. React Chem Eng,2020,5:886−895.  doi: 10.1039/D0RE00040J

    26. [26]

      LIU G H, ZONG Z M, LIU F J, MENG X L, ZHANG Y Y, WANG S K, LI S, ZHU C, WEI X Y, MA F Y, LIU J M. Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Dahuangshan lignite to clean liquid fuel over a mordenite supported nickel catalyst[J]. J Anal Appl Pyrolysis,2019,39:13−21.

    27. [27]

      LUO Z C, ZHENG Z X, LI L, CUI Y T, ZHAO C. Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures[J]. ACS Catal,2017,7(12):8304−8313.  doi: 10.1021/acscatal.7b02317

    28. [28]

      WU H R, SONG J L, XIE C, WU C Y, CHEN C J, HAN B X. Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C[J]. ACS Sustainable Chem Eng,2018,6:2872−2877.  doi: 10.1021/acssuschemeng.7b02993

    29. [29]

      TU C Y, CHEN J W, LI W L, WANG H Y, DENG K X, VINOKUROV V A, HUANG W. Hydrodeoxygenation of bio-derived anisole to cyclohexane over bi-functional IM-5 zeolite supported Ni catalysts[J]. Sustainable Energy Fuels,2019,3:3462−3472.  doi: 10.1039/C9SE00554D

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    17. [17]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    18. [18]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(10)
  • Abstract views(2404)
  • HTML views(334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return