Citation: Fen-ji LI, Yan-kun ZHANG, Chun-xiao YANG, Ke-xin ZHANG, Fu-ting XIA, Qiu-lin ZHANG, Peng-fei PANG, Hui-min WANG. WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 228-237. doi: 10.19906/j.cnki.JFCT.2021015 shu

WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3

  • Corresponding author: Fu-ting XIA, xiafuting@163.com
  • Received Date: 13 October 2020
    Revised Date: 17 November 2020

Figures(9)

  • In this paper, RuO2/ZrO2 catalyst and WO3 doped RuO2/WO3-ZrO2 catalysts with different WO3 loadings were designed and prepared for selective catalytic oxidation of ammonia. Among the catalysts, RuO2/ZrO2 catalyst exhibits excellent catalytic activity but poor N2 selectivity. It is worth noting that the activity of RuO2/ZrO2 catalyst remains unchanged after 5% or 10% WO3 doping, while the N2 selectivity at high temperature is significantly improved, and NH3 is completely transformed at 225 ℃. However, when WO3 content rises to 15% and 20%, the catalytic activity of RuO2/ZrO2 catalyst decreases slightly, while N2 selectivity is not further improved at high temperature. Therefore, it can be judged that the optimal WO3 content is 10%. In addition, it is found that WO3 doping can change the microstructure of the catalyst and the corresponding specific surface area increases with the increase of WO3 content through BET analysis. XRD, H2-TPR and XPS show that WO3 doping can change the crystal structure of ZrO2, increase the stability of the catalyst. According to the DRIFT spectra results, as WO3 is doped into the catalyst, the amount of surface acid sites on the catalyst increase. More surface acid sites can facilitate the adsorption of ammonia species, inhibit the rapid reaction between ammonia and oxygen, and avoid formation of more by-products, which are the key factors to improve the N2 selectivity.
  • 加载中
    1. [1]

      GUO J J, PENG Y, ZHANG Y N. Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/HSAPO-34 catalysts[J]. Appl Catal A: Gen,2019,585(5):117−119.

    2. [2]

      LIU H, FU M L, JIN X X, SHANG Y, SHINDELL D, FALUVE G, SHINDELL C, HE K. Health and climate impacts of ocean-going vessels in East Asia[J]. Nature Clim Change,2016,6(7):1037−1041.

    3. [3]

      LONG R. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method[J]. J Catal,2002,207(2):158−165.

    4. [4]

      LIU J, SUN M M, LIN Q J, LIU S, XU H D, CHEN Y Q. Promotional effects of ethylenediamine on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SiAlOx: States and particle sizes of Pt[J]. Appl Surf Sci,2019,481(1):1344−1351.

    5. [5]

      CHMIELARZ L, JABONSKA, MAGDALENA. Advances in selective catalytic oxidation of ammonia to dinitrogen: A review[J]. Rsc Adv,2015,5(54):43408−43431.  doi: 10.1039/C5RA03218K

    6. [6]

      SANG M L, HONG S C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Appl Catal B: Environ,2015, 163(2):30−39.

    7. [7]

      TANG X L, LI J Y, YI H H, YU Q J, GAO F Y, ZHANG R C, LI C L, CHU C. An efficient two-step method for NH3 removal at low temperature using CoOx-CuOx/TiO2 as SCO catalyst followed by NiMn2O4 as SCR catalyst[J]. Energ Fuels,2017,31(8):8580−8593.  doi: 10.1021/acs.energyfuels.7b01329

    8. [8]

      SHOJAEE K, HAYNES B S, MONTOYA A. The catalytic oxidation of NH3 on Co3O4(110): A theoretical study[J]. Proc Combust Inst,2016,36(3):4365−4373.

    9. [9]

      RUTKOWSKA M, PACIA I, BASAG S, KOWALCZYK A, PIWOWARSKA Z, DUDA M, TARACH K A, GORA-MAREK K, MICHALIK M, DIAZ U, CHMIELARZ L. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3 -SCO processes[J]. Microprous Mesoporous Mater,2017,246:193−206.  doi: 10.1016/j.micromeso.2017.03.017

    10. [10]

      LONG R Q, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites[J]. J Catal,2001,201(1):145−152.  doi: 10.1006/jcat.2001.3234

    11. [11]

      SONG D D, SHAO X Z, YUAN M L, WANG L, ZHAN W C, GUO Y L, GUO Y, LU G Z. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides[J]. RSC Adv,2016,91(6):88117−88125.

    12. [12]

      LI Z, HONG H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3[J]. J Catal,2009,268(1):18−25.  doi: 10.1016/j.jcat.2009.08.011

    13. [13]

      CUI X, ZHOU J, YE E, CHEN H, LI L, RUAN M, SHI J. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method[J]. Catal-New York,2010,270:310−317.

    14. [14]

      OLOFSSON G, REINEWALLENBERG L, ANDERSSON A, CATAL J. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3[J]. J Catal,2005,230(1):1−13.

    15. [15]

      SONIA A C, CARABINEIRO, NIEUWENHUYS B E. Selective oxidation of ammonia over Ir(110)[J]. Surf,2002,505(1/3):163−170.

    16. [16]

      WANG H M, ZHANG Q L, ZHANG T X, WANG J, WEI J, LIU M, NING P. Structural tuning and NH3-SCO performance optimization of CuO-Fe2O3 catalysts by impact of thermal treatment[J]. Appl Surf Sci,2019,485:81−91.

    17. [17]

      JABLONSKA M, PALKOVITS R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges[J]. Appl Catal B: Environ.,2016,181(2):332−351.

    18. [18]

      QU Z P, FAN R, WANG Z, MIAO L. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method[J]. Appl Surf Sci,2015,351(1):573−579.

    19. [19]

      SYLWIA G, KATERINA P, KAMIL G, ANETA S, KATARZYNA P, LUCIE O. Supplementary materials: Cu-Mg-Fe-O-(Ce) complex oxides as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO)[J]. Catal,2020,10(2):153−175.

    20. [20]

      WANG Z, QU Z, QUAN X, WANG H. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Appl Catal B: Environ,2013,134−135:153−166.

    21. [21]

      LEE S M, LEE H H, HONG S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Appl Catal A: Gen,2014,470(2):189−198.

    22. [22]

      GONG J L, OJIFINNI R A, KIM T S, WHITE J M, MULLINS C B. Selective catalytic oxidation of ammonia to nitrogen on atomic oxygen precovered au(111)[J]. J Am Chem Soc,2006,128(28):9012−9013.  doi: 10.1021/ja062624w

    23. [23]

      HE S L, ZHANG C B, YANG M, ZHANG Y, XU W Q, CAO N, HE H. Selective catalytic oxidation of ammonia from MAP decomposition[J]. Sep Purif Technol,2007,58(1):173−178.  doi: 10.1016/j.seppur.2007.07.015

    24. [24]

      XU Yi-fan. Preparation of Cu-Mn oxides and its performance on the selective catalytic oxidation of ammonia[D]. Dalian: Dalian University of Technology, 2016.

    25. [25]

      CURTIN T, LENIHAN S. Copper exchanged beta zeolites for the catalytic oxidation of ammonia[J]. Chem Comm,2003,9(11):1280−1281.

    26. [26]

      LIANG C X, LI X Y, QU Z PTADE M, LIU X M. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction[J]. Appl Surf Sci,2012,258(8):3738−3743.  doi: 10.1016/j.apsusc.2011.12.017

    27. [27]

      CHMIELARZ L, KUSTROWSKI P, PIWOWARSKA Z, MICHALIK M, PUDEKB, DZIEMBAJ R. Natural micas intercalated with Al2O3 and modified with transition metals as catalysts of the selective oxidation of ammonia to nitrogen[J]. Top Catal,2009,52(8):1017−1022.  doi: 10.1007/s11244-009-9263-8

    28. [28]

      SAZONOVA N N, SIMAKOV A V, NIKORO T A, BARANNIK G B, VERINGA H. Selective catalytic oxidation of ammonia to nitrogen[J]. React Kinet Catal Lett,1996,57(1):71−79.  doi: 10.1007/BF02076122

    29. [29]

      ZHANG Q L, WANG H M, NING P, SONG Z X, LIU X, DUAN Y K. In situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen[J]. Appl Surf Sci,2017,419(10):733−743.

    30. [30]

      YANG M, WU C Q, ZHANG C B, HE H. Selective oxidation of ammonia over copper-silver-based catalysts[J]. Catal Today,2004,90(3/4):263−267.

    31. [31]

      SONG Z X, NING P, ZHANG Q L, LI H, ZHANG J H, WANG Y C, LIU X, HUAN Z Z. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3[J]. J Environ Sci,2016,42(4):168−177.

    32. [32]

      WANG H M, NING P, ZHANG Q L, LIU X, ZHANG T X, FAN J, WANG J, LONG K X. Promotional mechanism of WO3 over RuO2-Fe2O3 catalyst for NH3 -SCO reaction[J]. Appl Catal A: Gen,2018,561:158−167.  doi: 10.1016/j.apcata.2018.05.020

    33. [33]

      MA L L, SU H, WANG Z H, ZHANG C H, LIU Z M. A novel Cr/WO3-ZrO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Commun,2019,125(3):77−81.

    34. [34]

      LIA S S, JIAO Y, WANG Z Z, WANG J L, ZHU Q, LI X Y, CHEN Y Q. Performance of RP-3 kerosene cracking over Pt/WO3-ZrO2 catalyst[J]. J Anal Appl Pyrolysis,2015,113:736−742.

    35. [35]

      MARTINZE A, PRIETO G, ARRIBAS M A, CONCEPCION P, SANCHEZROYO J F. Influence of the preparative route on the properties of WOx-ZrO2 catalysts: A detailed structural, spectroscopic, and catalytic study[J]. J Catal,2007,248(2):288−302.  doi: 10.1016/j.jcat.2007.03.022

    36. [36]

      WANG X, SHIL, CHENC, XU N. Alkylation of Benzene with 1-Hexene Catalyzed by WO3/ZrO2 Soild Acid[J]. Chin J Catal,2006,27(1):60−64.

    37. [37]

      SONG Y Q, ZHANG J J, ZHOU X L, WANG J A, XU L Y, YU G X. WO3 microcrystallites: One of the crucial factors controlling the isomerization activity of Pt/WO3-ZrO2[J]. Catal Today,2011,166(1):67−72.

    38. [38]

      ZHANG C, LIU T, WANG H J, WANG F, PAN X Y. Synthesis of acetyl salicylic acid over WO3/ZrO2 solid superacid catalyst[J]. Chem Eng J,2011,174(1):236−241.  doi: 10.1016/j.cej.2011.09.010

    39. [39]

      BUSTO M, GRAU J M, VERA C R. Screening of optimal pretreatment and reaction conditions for the isomerization-cracking of long paraffins over Pt/WO3-ZrO2 catalysts[J]. Appl Catal A: Gen,2010,387(1/2):35−44.  doi: 10.1016/j.apcata.2010.07.061

    40. [40]

      LIU J X, LIU J, ZHAO Z, SONG W Y, WEI Y C, DUAN A J, JIANG G Y. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chin J Catal,2016,37(5):750−759.  doi: 10.1016/S1872-2067(15)61072-5

    41. [41]

      BASHEL S N, ALI T T, MOHAMED, MOKHTAR, KATABATHINI, NARASIMHARAO. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange[J]. Nano Res Lett,2015,10(73):1−13.

    42. [42]

      TRIWALLYONO S, JALIL A A, HATTORI H. Study of hydrogen adsorption on Pt/WO3-ZrO2 through Pt Sites[J]. Nat Gas Chem,2007,16(3):252−257.

    43. [43]

      TANAKA M, HASEGAWA M, DERICIOGLU A F. Measurement of residual stress in air plasma-sprayed Y2O3–ZrO2 thermal barrier coating system using micro-Raman spectroscopy[J]. Mater Sci Eng, A,2006, 419(1/2):262−268.

    44. [44]

      GAR A M, OOKAWARA S, FUKUSHI D, SATO A, TAWFIK A. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin[J]. J Hazard Mater,2016,302(1):225−231.

    45. [45]

      MARIA A, CORTES-JACOME, CARLOSANGELES CHAVEZ. Generation of WO3-ZrO2 catalysts from solid solutions of tungsten in zirconia[J]. J Solid State Chem,2006,179(8):2663−2673.

    46. [46]

      MEI Z J, LI Y, FAN M H. The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al2O3 catalysts for the water gas shift and methanation[J]. Int J Hydrog Energy,2014,39(27):14808−14816.  doi: 10.1016/j.ijhydene.2014.07.072

    47. [47]

      CHEN C M, CAO Y, LIU S T, CHEN J M, JIA W B. The catalytic properties of Cu modified attapulgite in NH3-SCO and NH3-SCR reactions[J]. Appl Surf Sci,2019,480(6):537−547.

    48. [48]

      QADIR K, JOO S H, MUN B S, RUTCHER D R, RENZAS J R, AKSOY F, LIV Z, SOMORJAI G A, PARK J Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS[J]. Nano Lett,2012,(12):5761−8.

    49. [49]

      LI L L, CAI J H, LIU Y, NI J, LIN B Y, WANG X Y, AU C T, JIANG L L. Zeolite-seed-directed Ru nanoparticles highly resistant against sintering for effificient nitrogen activation to ammonia[J]. Sci Bull,2020,65:1085−1093.  doi: 10.1016/j.scib.2020.02.010

    50. [50]

      SHAN W, LIU F, HE H. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Commun,2011,47(28):8046−8048.  doi: 10.1039/c1cc12168e

    51. [51]

      LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phy Chem C,2010,114(40):16929−16936.  doi: 10.1021/jp912163k

    52. [52]

      MYAGKOV V G, TAMBASOV I A, BAYUKOV O A. Solid state synthesis and characterization of Fe-ZrO2 ferromagnetic nanocomposite thin films[J]. J Alloys and Compd,2015,636(5):223−228.

    53. [53]

      ZENG Y, ZHANG S, WANG Y. CeO2 supported on reduced TiO2 for selective catalytic reduction of NO by NH3[J]. J Colloid Interface Sci,2017,496(15):487−495.

    54. [54]

      HADJIIVANOV K I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catal Rev Sci Eng,2007,42(1/2):71−144.

  • 加载中
    1. [1]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    16. [16]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(10)
  • Abstract views(2603)
  • HTML views(464)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return