Citation: Ya-ke WANG, Bao-shun ZHU, Guo-min LI, Li-ping LIANG. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014 shu

Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue

Figures(8)

  • Mullite-based ceramsite was prepared from coal gangue and bauxite. With ceramsite, ferric nitrite and glucose as raw materials, Fe/C/Mullite-based ceramics composite material was prepared by wet chemical synthesis technology combined with calcination at 900 ℃ in argon atmosphere. In the composite materials, C with a certain degree of graphitization covered the surface of the ceramsite, and Fe particles were uniformly dispersed in the grid of C layer. Due to the dielectric loss caused by the conductive polarization derived from the Fe particles and graphite, as well as the interfacial polarization derived from the interface between loading substance and matrix, the material showed enhanced absorption performance. When the ferric nitrite concentration in the initial solution was 0.1 mol/L, the sample FeCM-0.1 exhibited the best absorbing properties. The minimum reflection loss value of −13.9 dB was obtained at 14.6 GHz with a matching thickness of only 2.0 mm and the corresponding effective bandwidth was 3.6 GHz. This study provides a new way for the production of low-cost microwave absorbing materials and the resource utilization of solid waste coal gangue.
  • 加载中
    1. [1]

      WANG Qing-he, LI Zhe, ZHOU Mei, ZHANG Yu-zhuo. Effects of spontaneous-combustion coal gangue aggregate replacement ratio on flexural behavior of reinforced concrete beams[J]. J Build Struct,2020,41(12):64−74.

    2. [2]

      LI Wen-long. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Build Struct,2020,50(13):49−53.

    3. [3]

      LIU Hao, LI Qing, HUNG Bing-zhang, HUANG Bang-biao, LI Jie-neng, WANG Rui, XIE Wei-biao, LIANG Xiao-qian. Study on durability of sintered shale brick from coal gangue[J]. Mater Rev,2019,33(S2):229−232.

    4. [4]

      KONG Jing, GAO Hong, LI Yan, WANG Xiang-ke, ZHANG Jing-jing, HE Duan-peng, WU Bing, XING Yan. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Mater Rev,2020,34(9):9055−9063.

    5. [5]

      CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457.  doi: 10.3724/SP.J.1077.2011.00449

    6. [6]

      ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805(15):1071−1080.

    7. [7]

      SHANG Kai, WU Zhi-hong, ZHANG Lu-ping, WANG Qian, ZHENG Hai-kang. Absorbing performance of MoSi2/BC composites using by bamboo charcoal template[J]. J Mater Eng,2019,47(5):122−128.

    8. [8]

      HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin-Chem,2018,67(22):9−28+438.

    9. [9]

      LI He, CHEN Kai-bin, LUO Ying-tao, SUN Li-zhen, DU Juan. Absorbing mechanism and progress of carbon-based electromagnetic wave absorbing nanocomposites[J]. Mater Rev,2019,33(S2):73−77.

    10. [10]

      SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438−444.  doi: 10.1016/j.carbon.2020.02.031

    11. [11]

      WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946.  doi: 10.1039/C4TA02815E

    12. [12]

      WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452.  doi: 10.1021/jp4000544

    13. [13]

      KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273.  doi: 10.15541/jim20180178

    14. [14]

      WANG Sheng-hao, WEN Feng, HAO Wan-jun, CAO-Yang. Electromagnetism pollution and protection materials for electromagnetic radiation[J]. Environ Sci Technol,2006,12:96−98+121.  doi: 10.3969/j.issn.1003-6504.2006.09.039

    15. [15]

      SY/T5108−2014, Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations[S].

    16. [16]

      LIU X X, ZHANG Z Y, WU Y P. Absorption properties of carbon black/silicon carbide microwave absorbers[J]. Composites Part B,2011,42(2):326−329.  doi: 10.1016/j.compositesb.2010.11.009

    17. [17]

      LUO N, LI X J, WANG X H, YAN H, ZHANG C, WANG H. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863.  doi: 10.1016/j.carbon.2010.06.051

    18. [18]

      YANG T Z, QIAN T, WANG M F, SHEN X W, XU N, SUN Z Z, YAN C L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries[J]. Adv Mater,2016,28(3):539−545.  doi: 10.1002/adma.201503221

    19. [19]

      WEN F S, HOU H, XING J Y, ZHANG X Y, SU Z B, YUAN S J, LIU Z Y. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber[J]. Carbon,2015,89:372−377.  doi: 10.1016/j.carbon.2015.03.057

    20. [20]

      YANG Y, GUO Z, ZHANG H, HUANG D Q, GU J L, HUANG Z H, KANG F Y, T. ALAN H, RUTLEDG G C. Electrospun magnetic carbon composite fibers: synthesis and electromagnetic wave absorption characteristics[J]. J Appl Polym Sci,2013,127(6):4288−4295.  doi: 10.1002/app.38027

    21. [21]

      WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6(12):11009−11017.  doi: 10.1021/nn304630h

    22. [22]

      COLE K S, COLE R H. Dispersion and absorption in dielectrics I. alternating current characteristics[J]. J Chem Phys,1941,9(4):341.  doi: 10.1063/1.1750906

    23. [23]

      SU Q M, ZHONG G, LI J, DU G H, XU B S. Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties[J]. Appl Phys A,2012,106(1):59−65.  doi: 10.1007/s00339-011-6641-4

    24. [24]

      WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115(29):14025−14030.  doi: 10.1021/jp202078p

    25. [25]

      AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J]. J Appl Phys,1991,69(11):7762−7764.  doi: 10.1063/1.347502

    26. [26]

      LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous Mesoporous Mater,2015,211(15):97−104.

    27. [27]

      WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273.  doi: 10.1016/j.carbon.2018.03.081

    28. [28]

      WANG X L, GENG Q Y, SHI G M, XU G, YU J, GUAN Y YZHANG Y J, LI D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption[J]. J Alloy Compd,2019,803(30):818−825.

    29. [29]

      LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.

    30. [30]

      QI X S, YANG Y, ZHONG W, QIN C, DENG Y, CHAKTONG A, DU Y W. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption[J]. Carbon,2010,48(12):3512−3522.  doi: 10.1016/j.carbon.2010.05.047

  • 加载中
    1. [1]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    13. [13]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    14. [14]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    15. [15]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(8)
  • Abstract views(2344)
  • HTML views(495)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return