Citation: WAN Si-yu, SHI Lei. Thermodynamic analysis and experimental verification of a new route for direct diethyl oxalate synthesis[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 121-128. doi: 10.19906/j.cnki.JFCT.2021007 shu

Thermodynamic analysis and experimental verification of a new route for direct diethyl oxalate synthesis

  • Corresponding author: SHI Lei, shilei1982@dicp.ac.cn
  • Received Date: 26 August 2020
    Revised Date: 16 October 2020

    Fund Project: The project was supported by the Key Task and Local Project in Science & Technology of SYUCT, China (LDB2019005), High-Level Innovation Team Overseas Training Project of Liaoning, China (2018LNGXGJWPY-ZD002), National Natural Science Foundation of China (21303106) and Innovative Talents in University of Liaoning Province (LR2016015)

  • The synthesis of high quality diethyl oxalate (DEO) via transesterification of dimethyl oxalate (DMO) and ethanol (EtOH) was reported. The thermodynamic data of each substance involved in the reaction were estimated by Benson and Joback's group contribution method and Watson formula, and the enthalpy change, entropy change, Gibbs free energy and equilibrium constant of each step of DEO synthesis were calculated by classical thermodynamic formula under atmospheric pressure and in the temperature range of 323−368 K. The DMO conversion, product composition and reaction equilibrium constant at different temperatures and raw material ratios were measured by experiments and compared with the theoretical data. It is found that the error between the measured DMO conversion and the estimated value is less than 1%, and the measured equilibrium constant is basically consistent with the estimated value. After strict experimental verification, it is proved that the thermodynamic data estimated by thermodynamic analysis are reliable. The actual catalytic distillation conditions were simulated, and the composition of the initial raw materials and the final products at 353 K was calculated with the hypothesis of 99.9% DEO purity at the bottom. When the content of EtOH in the bottom was higher than 2.59% and the molar ratio of initial EtOH to DMO was higher than 2.10, the purity of DEO could reach the target, and the overall process energy consumption was significantly reduced. It would be an efficient and green route for DEO synthesis.
  • 加载中
    1. [1]

      LI Y X, XUE B, YANG Y T. Synthesis of ethylbenzene by alkylation of benzene with diethyl oxalate over HZSM-5[J]. Fuel Process Technol,2009,90(10):1220−1225.  doi: 10.1016/j.fuproc.2009.06.001

    2. [2]

      WILEY R H, SLAYMAKER S C. Carbamylmaleimides from the malonamide-diethyl oxalate reaction[J]. J Am Chem Soc,1958,80(6):1385−1388.  doi: 10.1021/ja01539a028

    3. [3]

      CAMPAIGNE E, VAN VERTH J E. Reaction of diethyl oxalate with some ortho-substituted anilines[J]. J Org Chem,1958,23(9):1344−1346.  doi: 10.1021/jo01103a029

    4. [4]

      CREARY X. Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of trifluoromethyl ketones and a-keto esters via stable tetrahedral adducts[J]. J Org Chem,1987,52(22):5026−5030.  doi: 10.1021/jo00231a036

    5. [5]

      MIYAMURA S, SATOH T, MIURA M. Rhodium-catalyzed diarylation of oxalates using arylboron compounds[J]. J Org Chem,2007,72(6):2255−2257.  doi: 10.1021/jo062628j

    6. [6]

      AFROOZ M, DEHGHANI H. First application of diethyl oxalate as efficient additive in high performance dye-sensitized solar cells based on iodide/triiodide electrolyte[J]. Electrochim Acta,2015,174:521−531.  doi: 10.1016/j.electacta.2015.06.024

    7. [7]

      CONTI C, ALIATIS I, CASATI M, COLOMBO C, MATTEINI M, NEGROTTI R, REALINI M, ZERBI G. Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates[J]. J Cult Herit,2014,15(3):336−338.  doi: 10.1016/j.culher.2013.08.002

    8. [8]

      KENEALY W, HORN E, HOUTMAN C. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 1. Energy savings and improved pulps[J]. Holzforschung,2007,61(3):223−229.  doi: 10.1515/HF.2007.040

    9. [9]

      KENEALY W, HORN E, DAVIS M, SWANEY R, HOUTMAN C. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 2. Release of hemicellulosic carbohydrates[J]. Holzforschung,2007,61(3):230−235.  doi: 10.1515/HF.2007.041

    10. [10]

      HAO C Y, WANG S P, MA X B. Gas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst[J]. J Mol Catal A: Chem,2009,306(1/2):130−135.  doi: 10.1016/j.molcata.2009.02.038

    11. [11]

      HAO Cui-ying, WANG Sheng-ping, LI Zhen-hua, MA Xin-bin. Analysis of diethyl carbonate from diethyl oxalate by GC-MS[J]. Nat Gas Ind,2006,31(3):74−76.

    12. [12]

      UCHIUMI S, ATAKA K, MATSUZAKI T. Oxidative reactions by a palladium-alkyl nitrite system[J]. J Org Chem,1999,576(1/2):279−289.  doi: 10.1016/S0022-328X(98)01064-X

    13. [13]

      MA Xin-bin, XU Gen-hui, CHEN Jin-wen, CHEN Hong-fang. Kinetics of CO gas phase catalytic coupling to diethyl oxalate[J]. CIESC J,1995,46(1):50−56.

    14. [14]

      MENG F D, XU G H, GUO Q R. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/a-Al2O3 catalyst[J]. J Mol Catal A: Chem,2003,201(1/2):283−288.  doi: 10.1016/S1381-1169(03)00182-1

    15. [15]

      FANG J G, WANG B W, LI Z H. Study on the reaction of CO coupling to oxalate[J]. React Kinet Catal Lett,2003,80(2):293−301.  doi: 10.1023/B:REAC.0000006138.57139.16

    16. [16]

      GAO Z H, LIU Z C, HE F, XU G H. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate[J]. J Mol Catal A: Chem,2005,235(1/2):143−149.  doi: 10.1016/j.molcata.2005.03.003

    17. [17]

      GAO X C, ZHAO Y J, WANG S P, YIN Y L, WANG B W, MA X B. A Pd-Fe/a-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate[J]. Chem Eng Sci,2011,66(15):3513−3522.  doi: 10.1016/j.ces.2011.04.012

    18. [18]

      LI Zhen-hua, XU Gen-hui, WANG Bao-wei, MA Xin-bin, DU Pa. Deactivation mechanism of H2 on CO gas phase catalytic coupling to diethyl oxalate[J]. CIESC J,2003,54(1):59−63.  doi: 10.3321/j.issn:0438-1157.2003.01.014

    19. [19]

      SHI Lei, YU Yue, ZHAO Fu-xin, XIA Yu, FAN Jia-qi. Method for one-step synthesis of symmetrical oxalate from dimethyl oxalate and alcohol: CN, 108911975A[P]. 2018-11-30.

    20. [20]

      PRAUSNITZ J M, POLING B E, O’CONNELL J P. The Properties of Gases and Liquids[M]. 5nd ed. Beijing: Chemical Industry Press, 2006: 48-55.

    21. [21]

      MA Pei-sheng. Handbook of Experimental Physical Properties of Organic Compounds-Carbon, Hydrogen, Oxygen and Halogen[M]. Beijing: Chemical Industry Press, 2006: 521.

    22. [22]

      Department of Physical Chemistry, Tianjin University. Physical Chemistry[M]. 5nd ed. Beijing: Higher Education Press, 2009: 294-295.

    23. [23]

      YANG Yong, TANG Ji-hai, CHEN Xian, FEI Zhao-yang, CUI Mi-fen, QIAO Xu. Thermodynamic analysis of synthesis of methyl carbamate from methyl phenyl carbonate[J]. Chem Ind Eng,2016,33(1):10−14.

    24. [24]

      JIA Xiao-qiang, WANG Gui-rong, ZHAO Xin-qiang, WANG Yan-ji. Thermodynamic analysis of synthesis of toluene diphenyl carbamate[J]. Nat Gas Ind,2013,38(2):19−23.  doi: 10.3969/j.issn.1001-9219.2013.02.005

    25. [25]

      DONG Xin-fa, FANG Li-guo, CHEN Li. Physical Property Estimation Principle and Computer Calculation[M]. Beijing: Chemical Industry Press, 2006: 195−196.

    26. [26]

      WANG Li-ping. Thermodynamic analysis of transesterification reaction system of dimethyl carbonate and ethanol[J]. Nat Gas Ind,2012,37(5):23−26.  doi: 10.3969/j.issn.1001-9219.2012.05.006

    27. [27]

      MA Pei-sheng. Chemical Data[M]. Beijing: China Petrochemical Press, 2003: 99−100.

    28. [28]

      J A DEAN. Gram's Handbook of Chemistry[M]. 2nd ed. Beijing: Science Press, 2003: 58.

    29. [29]

      MA Pei-sheng. Basic Data Manual for Petrochemical Industry[M]. Beijing: Chemical Industry Press, 1993: 27.

    30. [30]

      FISHTINE S H. Hydrocarbon process petro[J]. Ind Eng Chem Res,1963,42(10):140−143.

  • 加载中
    1. [1]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    2. [2]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    3. [3]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    4. [4]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    9. [9]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(9)
  • Abstract views(2116)
  • HTML views(510)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return