Citation: LIU Mei-jia, WANG Gang, ZHANG Zhong-dong, TIAN Ai-zhen. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 104-112. doi: 10.19906/j.cnki.JFCT.2021006 shu

Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis

  • Corresponding author: WANG Gang, wanggang@cup.edu.cn ZHANG Zhong-dong, zhangzhongdong@petrochina.com.cn
  • Received Date: 31 August 2020
    Revised Date: 30 September 2020

    Fund Project: The project was supported by Technology Development Project of China National Petroleum Corporation-Research and Development of Upgrading Technology for the Transformation of Oil Refining to Chemical Industry (2019A-1809) and Development and Application of Flexible Catal Cracking Gasoline Olefins Conversion (CCOC) (KYWX-19-019)

Figures(7)

  • The cracking reaction mechanism of C5 hydrocarbons(n-pentane, 1-pentene) was analyzed. It is found that according to the ideal carbanion reaction mechanism and free radicals reaction mechanism, the molar selectivity of the cracking of n-pentane and 1-pentene to lower olefins (C2H4+C3H6+C4H8) is 50% and 100%, respectively. However, using MFI-30 zeolite, the molar selectivity of catalytic cracking of n-pentane and 1-pentene to light olefins at 650 ℃ is 23.41% and 56.79%, respectively, suggesting that 26.59% and 43.21% of light olefins have undergone hydrogen transfer reactions. The effects of different zeolites and key reaction temperature on the hydrogen transfer reaction during the catalytic pyrolysis of C5 hydrocarbons were further investigated. The results show that the zeolite with small pore structure and low acid density and higher reaction temperature can inhibit the hydrogen transfer reaction to varying degrees, thereby increasing the selectivity of light olefins. At 650 ℃, as the zeolite changes from the FAU with a large pore structure and high acid content to the MFI-120 with a small pore structure and low acid content, the hydrogen transfer coefficient HTC of the catalytic pyrolysis of n-pentane and 1-pentene is reduced by 96.86% and 50.58%, respectively, and the coke selectivity is reduced from 11.91% and 20.77% to 0.75% and 0.89%, respectively. However, the selectivity of the lower olefins increases from 14.25% and 25.14% to 46.28% and 62.58%, respectively.
  • 加载中
    1. [1]

      LIU Z Y, ZHANG Z D, YANG C H, GAO X H. Domestic technology developments on high-efficiency heavy oil conversion FCC catalysts’ industrialization[J]. Appl Petrochem Res,2015,5(4):269−275.  doi: 10.1007/s13203-015-0133-y

    2. [2]

      WANG Gang, SUN Jing, FANG Dong, XIAO Jun, NAN Jie, GAO Jin-sen. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Sci Sin Chim,2018,48(4):362−368.  doi: 10.1360/N032017-00169

    3. [3]

      LI C Y, YANG C H, SHAN H H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Ind Eng Chem Res,2007,46(14):4914−4920.  doi: 10.1021/ie061420l

    4. [4]

      ZAMOSTNY P, BELOHLAV Z, STARKBAUMOVA L, PATERA J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. J Anal Appl Pyrolysis,2010,87(2):207−216.

    5. [5]

      WANG Wei-ran, ZHANG Wen-bin, WANG Gang, LAN Xing-ying, XU Chun-ming, GAO Jin-sen. Research on the main influencing factors in the process of FCC gasoline secondary cracking to increase propylene production[J]. J Fuel Chem Technol,2009,31(1):67−72.

    6. [6]

      XU You-hao, CUI Shou-ye, WANG Xie-qing. Study on the bimolecular cracking reaction of FCC gasoline olefins and its ratio to bimolecular hydrogen transfer reaction[J]. Pet Process Petrochem,2007,38(9):1−5.  doi: 10.3969/j.issn.1005-2399.2007.09.001

    7. [7]

      POTAPENKO O V, DORONIN V P, SOROKINA T P, KROL O V, LIKHOLOBOVET V A. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Appl Catal A: Gen, 2016, 516, 153-159.

    8. [8]

      BORTNOVSKY O, SAZAMA P, WICHTERLOVA B. Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes[J]. Appl Catal A: Gen,2005,287(2):203−213.  doi: 10.1016/j.apcata.2005.03.037

    9. [9]

      HOU X, QIU Y, ZHANG X W, LIU G Z. Analysis of reaction pathways forn-pentane cracking over zeolites to produce light olefins[J]. Chem Eng J,2016,307(1):372−381.

    10. [10]

      THIVASASITH A, MAIHOM T, PENGPANICH S, WATTANAKIT C. Nanocavity effects of various zeolite frameworks on n-pentane cracking to light olefins: Combination studies of DFT calculations and experiments[J]. Phys Chem Chem Phys,2019,21(40):22215−22223.  doi: 10.1039/C9CP03871J

    11. [11]

      KUBO K, LIDA H, NAMBA S, LGARASHI A. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures[J]. Microporous Mesoporous Mater,2012,149(1):126−133.  doi: 10.1016/j.micromeso.2011.08.021

    12. [12]

      TREACY M M J, FOSTER M D. Packing sticky hard spheres into rigid zeolite frameworks[J]. Microporous Mesoporous Mater,2009,118(1/3):106−114.  doi: 10.1016/j.micromeso.2008.08.039

    13. [13]

      HOU X, NI N, WANG Y, ZHU W J, QIU Y, DIAO Z H, LIU G Z, ZHANG X W. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. J Anal Appl Pyrolysis,2019,138:270−280.

    14. [14]

      ZHANG R, WANG Z X, LIU H Y, LIU Z C, LIU G L, MENG X H. Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis[J]. Appl Catal A: Gen,2016,522:165−171.  doi: 10.1016/j.apcata.2016.05.009

    15. [15]

      HAAG W, DESSAU R. Duality of mechanism for acid-catalyzed paraffin cracking[C]// Proceedings of the 8th International Congress on Catalysis, 1984.

    16. [16]

      CORMA A, MONTON J B, ORCHILLES A V. Cracking of n-heptane on a HZSM-5 zeolite. The influence of acidity and pore structure[J]. Appl Catal,1985,16(1):59–74.

    17. [17]

      ZHANG Y, ZHAO R X, SANCHEZSANCHEZ M, HALLER G L, HU J Z, BERMEJODEVAL R, LIU Y, LERCHER J A. Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites[J]. J Catal,2019,370:424−433.  doi: 10.1016/j.jcat.2019.01.006

    18. [18]

      LUO Yu-ran. "Chemical Bond Energy Data Handbook"[J]. Scientia,2005,50(8):759−759.  doi: 10.3321/j.issn:0023-074X.2005.08.021

    19. [19]

      HUANG X, AIHEMAITIJIANG D, XIAO W D. Reaction pathway and kinetics of C3–C7 olefin transformation over high-silicon HZSM-5 zeolite at 400–490 °C[J]. Chem Eng J,2015,280(15):222−232.

    20. [20]

      CNUDDE P, DE WISPELAERE K, VAN D M J, WAROQUIER M, SPEYBROECK V V. Effect of temperature and branching on the nature and stability of alkene cracking intermediates in H-ZSM-5[J]. J Catal,2017,345:53−69.  doi: 10.1016/j.jcat.2016.11.010

    21. [21]

      ZHU Hua-yuan, HE Ming-yuan, ZHANG Xin, SONG Jia-qing. Hydrogen transfer reaction of n-hexane on several different molecular sieves[J]. Pet Process Petrochem,2001,(9):39−42.  doi: 10.3969/j.issn.1005-2399.2001.09.011

    22. [22]

      XU You-hao. Discussion on the role of hydrogen transfer reaction in olefin conversion[J]. Pet Process Petrochem,2002,(1):38−41.  doi: 10.3969/j.issn.1005-2399.2002.01.009

    23. [23]

      ZHU Xiang-xue, SONG Yue-qin, LI Hong-bing, LIU Sheng-lin, SUN Xin-de, XU Long-ya. Thermodynamic study on the catalytic cracking of butene to propylene/ethylene[J]. Chin J Catal,2005,26(2):22−28.

  • 加载中
    1. [1]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(23)
  • Abstract views(2353)
  • HTML views(530)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return