Citation: LI Ying, MA Hui-xia, ZHOU Feng, YUAN Xing-zhou, ZHANG Lei, ZHANG Jian. Performance of Ce-modified CuZnAl catalyst in the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 88-96. doi: 10.19906/j.cnki.JFCT.2021005 shu

Performance of Ce-modified CuZnAl catalyst in the dehydrogenation of sec-butanol to methyl ethyl ketone

  • Corresponding author: ZHANG Jian, zhangjian_lnpu@163.com
  • Received Date: 24 August 2020
    Revised Date: 1 October 2020

Figures(8)

  • The CuZnAl catalyst prepared by co-precipitation was further modified with different contents of Ce through impregnation and used in the dehydrogenation of sec-butanol (SBA) to methyl ethyl ketone (MEK); the effect of Ce modification on the performance of CuZnAl catalyst was investigated. The results illustrate that the introduction of Ce in CuZnAl can promote the formation of CuAl2O4 spinel and thus improve the stability of Ce-modified CuZnAl catalyst; meanwhile, Ce is also conducive to reducing the grain size, enhancing the dispersion of CuO and ZnO, lowering the reduction temperature, and increasing the content of Cu2+ and consequently the content of active Cu0 species upon reduction. Over the Ce-modified 8%-Ce-CuZnAl catalyst, the conversion of SBA reaches 91.4% under 240 °C and a mass space velocity of 5 h−1, with a selectivity of 96% to MEK; during the 100 h reaction test, the SBA conversion keeps at about 92%, with the selectivity to MEK at about 96%, demonstrating excellent stability of the Ce-modified CuZnAl catalyst.
  • 加载中
    1. [1]

      FANG D R, REN W Z, LIU Z G, XU X F, XU L, LU H Y, LIAO W P, ZHANG H M. Synthesis and applications of mesoporous Cu-Zn-Al2O3 catalyst for dehydrogenation of 2-butanol[J]. J Nat Gas Chem,2009,18(2):179−182.  doi: 10.1016/S1003-9953(08)60099-7

    2. [2]

      VEERESHGOUDAV S, PANDA P K. Electrospinning of cellulose acetate nanofiber membrane using methyl ethyl ketone and N, N-Dimethylacetamide as solvents[J]. Mater Chem Phys,2020,240(15):122147−122155.

    3. [3]

      GERAVAND E, SHARIATINIA Z, YARIPOUR F, SAHEBDELFAR S. Copper-based nanocatalysts for 2-butanol dehydrogenation: screening and optimization of preparation parameters by response surface methodology[J]. Korean J Chem Eng,2015,32(12):2418−2428.  doi: 10.1007/s11814-015-0087-x

    4. [4]

      SONG D, YOON Y G, LEE C J. Conceptual design for the recovery of 1,3-butadiene and methyl ethyl ketone via a 2,3-Butanediol-dehydration process[J]. Chem Eng Res Des,2017,123:268−276.  doi: 10.1016/j.cherd.2017.05.019

    5. [5]

      LI Yu-fang, WU Xiao-ming. Methyl ethyl ketone production technology and analysis of domestic and foreign markets[J]. Shanghai Chem Ind,2012,37(4):32−37.  doi: 10.3969/j.issn.1004-017X.2012.04.013

    6. [6]

      ODYAKOV V F, ZHIZHINA E G. Kinetics and mechanism of the homogeneous oxidation of n-butenes to methyl ethyl ketone in a solution of Mo-V-phosphoric heteropoly acid in the presence of palladium pyridine-2,6-dicarboxylate[J]. Kinet Catal,2011,52(6):828−834.  doi: 10.1134/S0023158411060164

    7. [7]

      LIU Z H, HUO W Z, MA H, QIAO K. Development and commercial application of MEK production technology[J]. Chin J Chem Eng,2006,14(5):676−684.  doi: 10.1016/S1004-9541(06)60134-1

    8. [8]

      FU Peng, LI Yong-gang, NING Chun-li. Cu/ZnO/Al2O3 catalyst for hydrogenation of sec-butyl acetate to sec-butanol for ethanol production[J]. Ind Catal,2017,25(4):68−73.  doi: 10.3969/j.issn.1008-1143.2017.04.012

    9. [9]

      FANG D, LIU Z M, MENG S H, WANG L G, XU L, WANG H. Influence of aging time on the properties of precursors of CuO/ZnO catalysts for methanol synthesis[J]. J Nat Gas Chem,2005,14:107−114.

    10. [10]

      LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminium oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen,1996,137:105−117.  doi: 10.1016/0926-860X(95)00284-7

    11. [11]

      ZHU W C, WANG L X, LIU S Y, WANG Z L. Characterization and catalytic behavior of silica-supported copper catalysts prepared byimpregnation and ion-exchange methods[J]. React Kinet Catal Lett,2008,93(1):93−99.  doi: 10.1007/s11144-008-5178-9

    12. [12]

      KEULER J N, LORENZEN L, MIACHON S. The dehydrogenation of 2-butanol over copper-based catalysts: Optimising catalyst composition and determining kinetic parameters[J]. Appl Catal A: Gen,2001,218(1):171−180.

    13. [13]

      MARCHIAJ, FIERRO J L G, SANTAMARIA J, MONZON A. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: A study of the activity evolution and reactivation of the catalyst[J]. Appl Catal A: Gen,1996,142:375−386.  doi: 10.1016/0926-860X(96)00087-7

    14. [14]

      CRIVELLO M, PEREZ C, FERNANDEZ J, EIMER G, HERRERO E, CASUSCELLI S, ENRIQUE R C. Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol[J]. Appl Catal A: Gen,2007,317:11−19.  doi: 10.1016/j.apcata.2006.08.035

    15. [15]

      JIANG Guang-shen, HU Yun-feng, CAI Jun, XU Peng, CHONG Liang, FANG Fei. Cu-ZnO catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Chem Ind Eng Prog,2013,32(2):352−358.

    16. [16]

      SUN D, MISU T, TAMADA Y, SATO S. Advantages of using Cu/SiO2 catalyst for vapor-phase dehydrogenation of 1-decanol into decanal[J]. Appl Catal A: Gen,2019,582(25):117109.

    17. [17]

      MA Yi-wen, BAO Gui-rong, WANG Qing-qing, LI Fa-she. Preparation of La modified Cu/Zn/Al catalyst and its catalytic performance for cellulose liquefaction[J]. Chem Ind Eng Prog,2016,35(1):179−187.

    18. [18]

      TOYIR J, FIERRO J L G, HOMS N, PISCINA P R D L. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl Catal B: Environ,2001,34(4):255−266.  doi: 10.1016/S0926-3373(01)00203-X

    19. [19]

      LI B X, HAO Y G, ZHANG B S, SHAO S K, HU L Y. A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers[J]. Appl Catal A: Gen,2017,531(3):1−12.

    20. [20]

      WANG Ai-li, JIA Xing-yuan, LU Zhi-peng, YIN Heng-bo, SHAO Shou-yan, ZHU Gui-sheng. Rare earth elements (La, Ce, Nd) modified Cu/SiO2 catalyzed dehydrogenation of methanol to methyl formate[J]. Special Petrochem,2019,36(1):20−25.  doi: 10.3969/j.issn.1003-9384.2019.01.005

    21. [21]

      LEI Qiu-yan. Study on Pr and Sm modified nickel-based and copper-based catalysts for hydrogen production from methanol steam reforming[D]. Kunming: Kunming University of Science and Technology, 2017.

    22. [22]

      YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare earth doping modification on the performance of Cu/ZnAl hydrotalcite derived catalysts for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(2):179−188.  doi: 10.3969/j.issn.0253-2409.2018.02.007

    23. [23]

      HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the selectivity of CuZnAl catalyst for gas phase hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol,2016,44(6):726−731.  doi: 10.3969/j.issn.0253-2409.2016.06.013

    24. [24]

      TAKEHIRA K. “Intelligent” reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites[J]. J Nat Gas Chem,2009,3(18):237−259.

    25. [25]

      LIU G, BAO G R, WANG H, LUO J, HUI S, HUANG Y, MA Y W. Ce modified Cu/Zn/Al catalysts for direct liquefaction of microcrystalline cellulose in supercritical methanol[J]. Cellulose,2019,26(15):8291−8300.  doi: 10.1007/s10570-019-02565-z

    26. [26]

      VELUS, SUZUKI K, OKAZAKI M, KAPOOR M P, OSAKI T, OHASHI F. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation[J]. J Catal,2000,194(2):373−384.  doi: 10.1006/jcat.2000.2940

    27. [27]

      XU Chuan, MA Ai-qiong, LIU Min-sheng, GAO Yun-qin. Synthesis of zinc aluminum spinel by solid state reaction method[J]. J Chin Cera Soc,2012,31(2):455−463.

    28. [28]

      FANG Shu-nong, JIANG Ming, FU Yi-lu, LIN Pei-yan, QIAO Shan, XIE Ya-ning. The effect of different calcination temperatures on the copper species structure of Cu/γ-Al2O3 catalyst[J]. Acta Phys Chim Sin,1994,10(7):623−627.  doi: 10.3866/PKU.WHXB19940709

    29. [29]

      MASOUD S N, FATEMEH D, MASOUD F K. Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol-gel method[J]. J Sol-Gel Sci Technol,2009,52(3):321−327.  doi: 10.1007/s10971-009-2050-y

    30. [30]

      LIU Wen-yan, WANG Hua, GAO Wen-gui, ZHANG Feng-jie. Effects of different promoters on the performance of industrial catalysts for the hydrogenation of carbon dioxide in methanol synthesis[J]. Mater Rev,2012,26(3):96−99.  doi: 10.3969/j.issn.1005-023X.2012.03.019

    31. [31]

      GAO W G, WANG H, WANG Y H, GUO W, JIA M R. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts[J]. J Rare Earth,2013,31(5):470−476.  doi: 10.1016/S1002-0721(12)60305-6

    32. [32]

      SHEN M Q, XU L L, WANG J Q, LI C X, WANG W L, WANG J, ZHAI Y P. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. J Rare Earth,2016,34(3):259−267.  doi: 10.1016/S1002-0721(16)60023-6

    33. [33]

      LI M M J, ZENG Z Y, LIAO F L, HONG X L, TSANG S C E. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J]. J Catal,2016,343:157−167.  doi: 10.1016/j.jcat.2016.03.020

    34. [34]

      BYOUNG K K, DAE S P, YANG S Y, JONGHEOP Y. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun,2012,24:90−95.  doi: 10.1016/j.catcom.2012.03.029

    35. [35]

      QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Study on the slow-release copper-aluminum spinel catalyst for the production of hydrogen from methanol-the influence of the synthesis of different copper sources[J]. J Fuel Chem Technol,2017,45(12):1481−1488.  doi: 10.3969/j.issn.0253-2409.2017.12.010

    36. [36]

      AUNBAMRUNG P, WONGKAEW A. Effect of Cu loading tocatalytic selective CO oxidation of CuO/CeO-CoO[J]. Adv Chem Eng Sci,2013,3(4):15−19.

    37. [37]

      LI Zhong, NIU Yan-yan, ZHENG Hua-yan, FU Ting-jun, ZHU Qiong-fang, YIN Li-hua. Effect of surface modification on Cu species and catalytic activity of Cu/activated carbon catalyst[J]. Chin J Inorg Chem,2011,27(7):1277−1284.

    38. [38]

      CHENG S Y, KOU J W, GAO Z H, HUANG W. Preparation of complexant-modified Cu/ZnO/Al2O3catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas[J]. Appl Catal A: Gen,2018,556:113−120.  doi: 10.1016/j.apcata.2018.02.027

    39. [39]

      FRANCO P, RICCARDO P. Catalytic behavior and surface chemistry of Copper/ZnO/Al2O3 catalysts for the decomposition of 2-propanol[J]. J Catal,1992,136:86−95.  doi: 10.1016/0021-9517(92)90108-T

    40. [40]

      WANG Dong-lei. Preparation of Cu/AC by microwave carbothermal reduction method for catalytic synthesis of dimethyl carbonate[D]. Taiyuan: Taiyuan University of Science and Technology, 2014.

    41. [41]

      GAO P, LI F, ZHAN H, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal,2013,298:51−60.  doi: 10.1016/j.jcat.2012.10.030

    42. [42]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy,2017,42(15):9930−9937.  doi: 10.1016/j.ijhydene.2017.01.229

    43. [43]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO 2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2013,38(11):4397−4406.  doi: 10.1016/j.ijhydene.2013.01.053

    44. [44]

      LI Y, FENG J T, LI D Q. Preparation and characterization of spherical mesoporous ZrO2-Al2O3 composites with high thermal stability[J]. Sci Chain Chem,2011,54(7):1032−1038.  doi: 10.1007/s11426-011-4282-2

    45. [45]

      YAP M H, FOW K L, CHEN G Z. Synthesis and applications of MOF-derived porous nanostructures[J]. Green Energy Environ,2017,2(3):218−245.  doi: 10.1016/j.gee.2017.05.003

    46. [46]

      AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling[J]. Appl Catal A: Gen,2005,279(1):155−164.

    47. [47]

      ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effectof precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol,2015,43(11):1366−1374.  doi: 10.3969/j.issn.0253-2409.2015.11.012

    48. [48]

      GAO Z H, LI S S, TIAN H H, DONG W B, LIU Y, JIA L, HUANG W. Synthesis of ethanol from syngas over CuZnAl catalysts with different Cu/Zn/Al molar ratios in polyethylene glycol 600 medium[J]. React Kinet Mech Catal,2017,122(2):1117−1127.  doi: 10.1007/s11144-017-1270-3

    49. [49]

      DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copperimpregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy,2015,40(33):10463−10479.  doi: 10.1016/j.ijhydene.2015.06.130

    50. [50]

      SHI L M, GAO C L, GUO F H, WANG Y J, ZHANG T B. Catalytic performance of Zr-doped CuO-CeO2 oxides for CO selective oxidation in H2-rich stream[J]. J Rare Earth,2019,37:720−725.  doi: 10.1016/j.jre.2019.01.003

    51. [51]

      ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on the performance of CuCe/Ac catalyst for methanol oxidative carbonylation[J]. J Fuel Chem Technol,2016,44(6):674−679.  doi: 10.3969/j.issn.0253-2409.2016.06.006

    52. [52]

      YU Qi-yan, HAO Xue-song, YANG Xiao-hong, GU Shen, YAN Li-mei, SHI Cui. Study on the catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Petrochem Technol,2005,34(9):818−821.  doi: 10.3321/j.issn:1000-8144.2005.09.003

    53. [53]

      HE Fen-biao. Study on the catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone by co-precipitation[J]. Shanghai Chem Ind,2011,36(2):12−14.  doi: 10.3969/j.issn.1004-017X.2011.02.004

    54. [54]

      CHI De-xu, FANG De-ren. Performance test and industrial application of sec-butanol dehydrogenation catalyst[J]. Ind Catal,2012,20(11):65−68.  doi: 10.3969/j.issn.1008-1143.2012.11.015

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(11)
  • Abstract views(1851)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return