Citation: ZHAO Yun-peng, ZHAO Wei, SI Xing-gang, CAO Jin-pei, WEI Xian-yong. Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 55-62. doi: 10.19906/j.cnki.JFCT.2021004 shu

Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts

  • Corresponding author: ZHAO Yun-peng, zhaoyp@cumt.edu.cn CAO Jin-pei, caojingpei@cumt.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 10 October 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21878325), the Fundamental Research Funds for the Central Universities (China University of Mining and Technology, 2019XKQYMS49), and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(10)

  • Co-MOF was firstly prepared by solvothermal method, and then Co@C catalyst was prepared by one-step pyrolysis method from Co-MOF. The structure of Co@C catalyst was characterized by N2 physical adsorption-desorption (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Effects of Co-MOF pyrolysis temperature, reaction temperature, initial hydrogen pressure and reaction time on catalytic hydrogenation of guaiacol were investigated. The results show that both Co-MOF and Co@C are dominated by mesoporous. After pyrolysis, lamellar structure of Co-MOF changes into irregular sphericity. As raising pyrolysis temperature, specific surface area of Co@C decreases continuously. Under the conditions of reaction temperature 180 ℃, initial hydrogen pressure 2 MPa and reaction time 2 h, the guaiacol was completely transformed and selectivity of cyclohexanol was 92.8% using Co@C-600 as catalyst. The main reaction pathway of guaiacol hydrogenation catalyzed by Co@C is that guaiacol firstly forms phenol through removal of methoxyl group, and further is hydrogenated to cyclohexanol. In addition, Co@C-600 also has good catalytic activity for other phenolic monomers derived from lignin, such as phenol, p-methoxyphenol and 4-methyl guaiacol.
  • 加载中
    1. [1]

      SHERWOOD J. The significance of biomass in a circular economy[J]. Bioresour Technol,2020,300:122755.  doi: 10.1016/j.biortech.2020.122755

    2. [2]

      YU Qiang, ZHUANG Xin-shu, YUAN Zhen-hong, QI Wei, WANG Qiong, TAN Xue-song, XU Jin-liang, ZHANG Yu, XU Hui-juan, MA Long-long. Research progress on fuel and chemicals production from lignocellulose biomass[J]. Chem Ind Eng Prog,2012,31(4):784−791.

    3. [3]

      ZHU Chen-jie, ZHANG Hui-yan, XIAO Rui, CHEN Yong, LIU Dong, DU Feng-guang, YING Han-jie, OUYANG Ping-kai. Research progress of high value utilization of lignocellulose[J]. Sci Sin Chim,2015,45(5):454−478.  doi: 10.1360/N032014-00280

    4. [4]

      YUAN Zhen-qiu, LONG Jin-xing, ZHANG Xing-hua, XIA Ying, WANG Tie-jun, MA Long-long. Catalytic conversion of lignocellulose into energy platform chemicals[J]. Prog Chem,2016,28(1):103−110.

    5. [5]

      UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chem Rev,2015,116(4):2275−2306.

    6. [6]

      PEREZ J, MUNOZ-DORADO J, DE LA RUBIA T, MARTINEZ J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview[J]. Int Microbiol,2002,5(2):53−63.  doi: 10.1007/s10123-002-0062-3

    7. [7]

      YUAN Liang. Application of lignosulfonate in concrete admixture[J]. Spec Steel Techonl,2012,18(2):58−61.  doi: 10.3969/j.issn.1674-0971.2012.02.018

    8. [8]

      TYMCHYSHYN M, YUAN Z, ZHANG Y, XU C C. Catalytic hydrodeoxygenation of guaiacol for organosolv lignin depolymerization-catalyst screening and experimental validation[J]. Fuel,2019,254:115664.  doi: 10.1016/j.fuel.2019.115664

    9. [9]

      VERMA S, NADAGOUDA MN, VARMA RS. Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol[J]. Green Chem,2019,21(6):1253−1257.  doi: 10.1039/C8GC03951H

    10. [10]

      YU Yu-xiao, XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, ZHANG Xing-hua, ZHANG Xue. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. J Fuel Chem Technol,2013,41(4):443−448.  doi: 10.3969/j.issn.0253-2409.2013.04.009

    11. [11]

      LUO Z C, ZHENG Z X, WANG Y C, SUN G, JIANG H, ZHAO C. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chem,2016,18(21):5845−5858.  doi: 10.1039/C6GC01971D

    12. [12]

      WANG X, ZHU S, WANG S, HE Y, LIU Y, WANG J G, FAN W B, LV Y K. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO2 catalyst combined with Hβ zeolite[J]. RSC Adv,2019,9(7):3868−3876.  doi: 10.1039/C8RA09972C

    13. [13]

      WANG X, ZHU S, WANG S, WANG J G, FAN W B, LV Y K. Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol[J]. Appl Catal A: Gen,2018,568:231−241.  doi: 10.1016/j.apcata.2018.10.009

    14. [14]

      LU J Q, LIU X, YU G Q, LV J K, RONG Z M, WANG M, WANG Y. Selective Hydrodeoxygenation of guaiacol to cyclohexanol catalyzed by nanoporous nickel[J]. Catal Lett,2019,150(3):837−848.

    15. [15]

      GUO M, PENG J, YANG Q H, LI C. Highly active and selective RuPd bmetallic NPs for the cleavage of the diphenyl ether C–O bond[J]. ACS Catal,2018,8(12):11174−11183.  doi: 10.1021/acscatal.8b03253

    16. [16]

      HUA M L, SONG J L, XIE C, WU H R, HU Y, HUANG X, HAN B X. Ru/hydroxyapatite as a dual-functional catalyst for efficient transfer hydrogenolytic cleavage of aromatic ether bonds without additional bases[J]. Green Chem,2019,21(18):5073−5079.  doi: 10.1039/C9GC02336D

    17. [17]

      YAN Long, PANG Huan, HUANG Yao-bing, FU Yao. Supported Pd catalysts for the C-O cleavage of the lignin derived model dimers through intramolecular hydrogenolysis reaction[J]. Acta Chim Sin,2014,72(9):1005−1011.  doi: 10.6023/A14050397

    18. [18]

      QIU Ze-gang, YIN Chan-juan, LI Zhi-qin, FENG Kuo-yue. Recent advances in hydrodeoxygenation catalysts for phenols[J]. Chem Ind Eng Prog,2019,38(8):3658−3669.

    19. [19]

      YUAN S, FENG L, WANG K C, PANG J D, BOSCH M, LOLLAR C, SUN Y J, QIN J S, YANG X Y, ZHANG P, WANG Q, ZOU L F, ZHANG Y M, ZHANG L L, FANG Y, LI J L, ZHOU H C. Stable metal-organic frameworks: design, synthesis, and applications[J]. Adv Mater,2018,30(37):1704303.  doi: 10.1002/adma.201704303

    20. [20]

      HUANG Gang, CHEN Yu-zhen, JIANG Hai-long. Metal-organic frameworks for catalysis[J]. Acta Chim Sin,2016,74(2):113−129.  doi: 10.6023/A15080547

    21. [21]

      SHEN K, CHEN X D, CHEN J Y, LI Y W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catal,2016,6(9):5887−5903.  doi: 10.1021/acscatal.6b01222

    22. [22]

      WANG J, ZHONG Q, XIONG Y H, CHENG D Y, ZENG Y Q, BU Y F. Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors[J]. Appl Surf Sci,2019,483:1158−1165.  doi: 10.1016/j.apsusc.2019.03.340

    23. [23]

      REZAEE S, SHAHROKHIAN S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol[J]. Appl Catal B: Environ,2019,244:802−813.  doi: 10.1016/j.apcatb.2018.12.013

    24. [24]

      CAI J Y, CHEN Y, SONG H T, HOU L X, LI Z H. MOF derived C/Co@C with a “one-way-valve”-like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes[J]. Carbon,2020,160:64−70.  doi: 10.1016/j.carbon.2020.01.006

    25. [25]

      LIU X H, XU L J, XU G Y, JIA W D, MA Y F, ZHANG Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions[J]. ACS Catal,2016,6(11):7611−7620.  doi: 10.1021/acscatal.6b01785

    26. [26]

      ZHU J, CHEN F Q, ZHANG Z G, LI M, YANG Q W, YANG Y W, BAO Z B, REN Q L. M-gallate (M = Ni, Co) metal-organic framework-derived Ni/C and bimetallic Ni-Co/C catalysts for lignin conversion into monophenols[J]. ACS Sustainable Chem Eng,2019,7(15).

    27. [27]

      DONG L, YIN L L, XIA Q E, LIU X H, GONG X Q, WANG Y Q. Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a β-O-4 lignin model compound[J]. Catal Sci Technol,2018,8(3):735−745.  doi: 10.1039/C7CY02014G

    28. [28]

      SCHUTYSER W, VAN DEN BOSSCHE G, RAAFFELS A, VAN DEN BOSCH S, KOELEWIJN S F, RENDERS T, SELS B F. Selective conversion of lignin-derivable 4-alkylguaiacols to 4-alkylcyclohexanols over noble and non-noble-metal catalysts[J]. ACS Sustainable Chem Eng,2016,4(10):5336−5346.  doi: 10.1021/acssuschemeng.6b01580

    29. [29]

      NAKAGAWA Y, ISHIKAWA M, TAMURA M, TOMISHIGE K. Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO[J]. Green Chem,2014,16(4):2197−2203.  doi: 10.1039/C3GC42322K

    30. [30]

      LONG J X, SHU S Y, WU Q Y, YUAN Z Q, WANG T J, XU Y, ZHANG X H, ZHANG Q, MA L L. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO[J]. Energy Convers Manage,2015,105:570−577.  doi: 10.1016/j.enconman.2015.08.016

    31. [31]

      ZHOU M H, WANG Y, WANG Y B, XIAO G M. Catalytic conversion of guaiacol to alcohols for bio-oil upgrading[J]. J Energy Chem,2015,24(4):425−431.  doi: 10.1016/j.jechem.2015.06.012

    32. [32]

      GUO He-min. The effects of substituent position and type on the chemical properties of aromatic compounds were explained by electron effect[J]. Univ Chem,2008,(5):54−57.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    4. [4]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(31)
  • Abstract views(2888)
  • HTML views(868)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return