Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts
- Corresponding author: ZHAO Yun-peng, zhaoyp@cumt.edu.cn CAO Jin-pei, caojingpei@cumt.edu.cn
Citation:
ZHAO Yun-peng, ZHAO Wei, SI Xing-gang, CAO Jin-pei, WEI Xian-yong. Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts[J]. Journal of Fuel Chemistry and Technology,
;2021, 49(1): 55-62.
doi:
10.19906/j.cnki.JFCT.2021004
SHERWOOD J. The significance of biomass in a circular economy[J]. Bioresour Technol,2020,300:122755.
doi: 10.1016/j.biortech.2020.122755
YU Qiang, ZHUANG Xin-shu, YUAN Zhen-hong, QI Wei, WANG Qiong, TAN Xue-song, XU Jin-liang, ZHANG Yu, XU Hui-juan, MA Long-long. Research progress on fuel and chemicals production from lignocellulose biomass[J]. Chem Ind Eng Prog,2012,31(4):784−791.
ZHU Chen-jie, ZHANG Hui-yan, XIAO Rui, CHEN Yong, LIU Dong, DU Feng-guang, YING Han-jie, OUYANG Ping-kai. Research progress of high value utilization of lignocellulose[J]. Sci Sin Chim,2015,45(5):454−478.
doi: 10.1360/N032014-00280
YUAN Zhen-qiu, LONG Jin-xing, ZHANG Xing-hua, XIA Ying, WANG Tie-jun, MA Long-long. Catalytic conversion of lignocellulose into energy platform chemicals[J]. Prog Chem,2016,28(1):103−110.
UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chem Rev,2015,116(4):2275−2306.
PEREZ J, MUNOZ-DORADO J, DE LA RUBIA T, MARTINEZ J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview[J]. Int Microbiol,2002,5(2):53−63.
doi: 10.1007/s10123-002-0062-3
YUAN Liang. Application of lignosulfonate in concrete admixture[J]. Spec Steel Techonl,2012,18(2):58−61.
doi: 10.3969/j.issn.1674-0971.2012.02.018
TYMCHYSHYN M, YUAN Z, ZHANG Y, XU C C. Catalytic hydrodeoxygenation of guaiacol for organosolv lignin depolymerization-catalyst screening and experimental validation[J]. Fuel,2019,254:115664.
doi: 10.1016/j.fuel.2019.115664
VERMA S, NADAGOUDA MN, VARMA RS. Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol[J]. Green Chem,2019,21(6):1253−1257.
doi: 10.1039/C8GC03951H
YU Yu-xiao, XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, ZHANG Xing-hua, ZHANG Xue. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. J Fuel Chem Technol,2013,41(4):443−448.
doi: 10.3969/j.issn.0253-2409.2013.04.009
LUO Z C, ZHENG Z X, WANG Y C, SUN G, JIANG H, ZHAO C. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chem,2016,18(21):5845−5858.
doi: 10.1039/C6GC01971D
WANG X, ZHU S, WANG S, HE Y, LIU Y, WANG J G, FAN W B, LV Y K. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO2 catalyst combined with Hβ zeolite[J]. RSC Adv,2019,9(7):3868−3876.
doi: 10.1039/C8RA09972C
WANG X, ZHU S, WANG S, WANG J G, FAN W B, LV Y K. Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol[J]. Appl Catal A: Gen,2018,568:231−241.
doi: 10.1016/j.apcata.2018.10.009
LU J Q, LIU X, YU G Q, LV J K, RONG Z M, WANG M, WANG Y. Selective Hydrodeoxygenation of guaiacol to cyclohexanol catalyzed by nanoporous nickel[J]. Catal Lett,2019,150(3):837−848.
GUO M, PENG J, YANG Q H, LI C. Highly active and selective RuPd bmetallic NPs for the cleavage of the diphenyl ether C–O bond[J]. ACS Catal,2018,8(12):11174−11183.
doi: 10.1021/acscatal.8b03253
HUA M L, SONG J L, XIE C, WU H R, HU Y, HUANG X, HAN B X. Ru/hydroxyapatite as a dual-functional catalyst for efficient transfer hydrogenolytic cleavage of aromatic ether bonds without additional bases[J]. Green Chem,2019,21(18):5073−5079.
doi: 10.1039/C9GC02336D
YAN Long, PANG Huan, HUANG Yao-bing, FU Yao. Supported Pd catalysts for the C-O cleavage of the lignin derived model dimers through intramolecular hydrogenolysis reaction[J]. Acta Chim Sin,2014,72(9):1005−1011.
doi: 10.6023/A14050397
QIU Ze-gang, YIN Chan-juan, LI Zhi-qin, FENG Kuo-yue. Recent advances in hydrodeoxygenation catalysts for phenols[J]. Chem Ind Eng Prog,2019,38(8):3658−3669.
YUAN S, FENG L, WANG K C, PANG J D, BOSCH M, LOLLAR C, SUN Y J, QIN J S, YANG X Y, ZHANG P, WANG Q, ZOU L F, ZHANG Y M, ZHANG L L, FANG Y, LI J L, ZHOU H C. Stable metal-organic frameworks: design, synthesis, and applications[J]. Adv Mater,2018,30(37):1704303.
doi: 10.1002/adma.201704303
HUANG Gang, CHEN Yu-zhen, JIANG Hai-long. Metal-organic frameworks for catalysis[J]. Acta Chim Sin,2016,74(2):113−129.
doi: 10.6023/A15080547
SHEN K, CHEN X D, CHEN J Y, LI Y W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catal,2016,6(9):5887−5903.
doi: 10.1021/acscatal.6b01222
WANG J, ZHONG Q, XIONG Y H, CHENG D Y, ZENG Y Q, BU Y F. Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors[J]. Appl Surf Sci,2019,483:1158−1165.
doi: 10.1016/j.apsusc.2019.03.340
REZAEE S, SHAHROKHIAN S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol[J]. Appl Catal B: Environ,2019,244:802−813.
doi: 10.1016/j.apcatb.2018.12.013
CAI J Y, CHEN Y, SONG H T, HOU L X, LI Z H. MOF derived C/Co@C with a “one-way-valve”-like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes[J]. Carbon,2020,160:64−70.
doi: 10.1016/j.carbon.2020.01.006
LIU X H, XU L J, XU G Y, JIA W D, MA Y F, ZHANG Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions[J]. ACS Catal,2016,6(11):7611−7620.
doi: 10.1021/acscatal.6b01785
ZHU J, CHEN F Q, ZHANG Z G, LI M, YANG Q W, YANG Y W, BAO Z B, REN Q L. M-gallate (M = Ni, Co) metal-organic framework-derived Ni/C and bimetallic Ni-Co/C catalysts for lignin conversion into monophenols[J]. ACS Sustainable Chem Eng,2019,7(15).
DONG L, YIN L L, XIA Q E, LIU X H, GONG X Q, WANG Y Q. Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a β-O-4 lignin model compound[J]. Catal Sci Technol,2018,8(3):735−745.
doi: 10.1039/C7CY02014G
SCHUTYSER W, VAN DEN BOSSCHE G, RAAFFELS A, VAN DEN BOSCH S, KOELEWIJN S F, RENDERS T, SELS B F. Selective conversion of lignin-derivable 4-alkylguaiacols to 4-alkylcyclohexanols over noble and non-noble-metal catalysts[J]. ACS Sustainable Chem Eng,2016,4(10):5336−5346.
doi: 10.1021/acssuschemeng.6b01580
NAKAGAWA Y, ISHIKAWA M, TAMURA M, TOMISHIGE K. Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO[J]. Green Chem,2014,16(4):2197−2203.
doi: 10.1039/C3GC42322K
LONG J X, SHU S Y, WU Q Y, YUAN Z Q, WANG T J, XU Y, ZHANG X H, ZHANG Q, MA L L. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO[J]. Energy Convers Manage,2015,105:570−577.
doi: 10.1016/j.enconman.2015.08.016
ZHOU M H, WANG Y, WANG Y B, XIAO G M. Catalytic conversion of guaiacol to alcohols for bio-oil upgrading[J]. J Energy Chem,2015,24(4):425−431.
doi: 10.1016/j.jechem.2015.06.012
GUO He-min. The effects of substituent position and type on the chemical properties of aromatic compounds were explained by electron effect[J]. Univ Chem,2008,(5):54−57.
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
(a): survey; (b):Co 2p; (c):C 1s