Citation: Meng WANG, Yi-bin WANG, Hou-zhang TAN, Li-hai HE, Rui SUN, Guang HE, Jian-wei YANG. Effect of industrial ashes with high carbon and calcium-rich on slagging characteristics of blending Zhundong coals[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 1-10. doi: 10.19906/j.cnki.JFCT.2021001 shu

Effect of industrial ashes with high carbon and calcium-rich on slagging characteristics of blending Zhundong coals

  • Corresponding author: Hou-zhang TAN, tanhz@mail.xjtu.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 14 October 2020
    Available Online: 8 June 2022

Figures(11)

  • Influence of two kinds of industrial ashes with high carbon and calcium-rich as additives (drying ash and fly ash) on slagging characteristics for blends of high and low sodium coals was studied in detail. Experiments were performed including ash fusion temperature tests, ashing for blending coals with/without additives in a fixed bed furnace and slagging on un-cooled probe in a drop tube furnace. The results show that there is a large amount of amorphous silicon at 1000 ℃ during combustion of raw blending coals, which easily leads to low-temperature eutectic reaction at higher temperature. Adding 5% fly ash can raise soften temperature of the blended coal ashes by 100 ℃, and mass ratio of CaO to SiO2 in ashes reaches up to 2.5. Dicalcium silicate and grossular are newly generated, which effectively reduce the slagging propensities. The main phase in slag samples collected on the probe is identified as gehlenite after adding two industrial ashes into raw blending coals. The addition of two typical ashes can transform amorphous silicon into its crystalline mineral phase, inhibit formation of low-temperature eutectics. In contrast to the case of adding 5% fly ash, impact of adding 5% drying ash into raw blending coals on slagging tendency of the ash particles on un-cooled probe is insignificant.
  • 加载中
    1. [1]

      WEI Bo, TAN Hou−zhang, WANG Xue−bin, RUAN Ren−hui, HU Zhong−fa, WANG Yi−bin. Effect of Na/Ca/Fe on slagging behavior of Zhundong coal during combustion process[J]. J Chin Soc Power Eng,2017,37(9):685−690.

    2. [2]

      LÜ Jun−fu, SHI Hang, WU Yu−xin, ZHANG Yang. Transformation of AAEM and ash deposition characteristics during combustion of Zhundong coal[J]. J China Coal Soc,2020,45(1):377−385.

    3. [3]

      DONG ming−gang. Influence of high−sodium coal upon slagging, contamination and corrosion on the heating surface of boilers[J]. Therm Power Gen,2008,37(9):35−39.  doi: 10.3969/j.issn.1002−3364.2008.09.010

    4. [4]

      WEI B, TAN H, WANG Y, WANG X, YANG T, RUAN R. Investigation of characteristics and formation mechanisms of deposits on different positions in full−scale boiler burning high alkali coal[J]. Appl Therm Eng,2017,119:449−458.  doi: 10.1016/j.applthermaleng.2017.02.091

    5. [5]

      WANG X, XU Z, WEI B, ZHANG L, TAN H, YANG T, MIKULCIC H, DUIC N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing[J]. Appl Therm Eng,2015,80:150−159.  doi: 10.1016/j.applthermaleng.2015.01.051

    6. [6]

      WU X, ZHANG X, YAN K, CHEN N, ZHANG J, XU X, DAI B, ZHANG J, ZHANG L. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3 MWth pilot−scale combustion test[J]. Fuel,2016,181:1191−1202.  doi: 10.1016/j.fuel.2016.03.069

    7. [7]

      YANG S, SONG G, YANG Z, NA Y. Alkali metal transformation and ash deposition performance of high alkali content Zhundong coal and its gasification fly ash under circulating fluidized bed combustion[J]. Appl Therm Eng,2018,141:29−41.  doi: 10.1016/j.applthermaleng.2018.05.113

    8. [8]

      ZENG Xian−peng, YU Dun−xi, YU Ge, LIU Fang−qi, LIU Hu−ping, XU Ming−hou. Transformation of inorganic elements in different forms into ash particles during Zhundong coal combustion[J]. J China Coal Soc,2019,44(2):588−595.

    9. [9]

      WALSH P M, SAROFIM A F, BEER J M. Fouling of convection heat exchangers by lignitic coal ash[J]. Energy Fuels,1992,6(6):709−715.  doi: 10.1021/ef00036a004

    10. [10]

      ZHANG Li−meng, DONG Xin−guang, LIU Ke, TAN Hou−zhang, WANG Xue−bin, WEI Bo. Effect of kaolin on ash slagging and mineral conversion of Zhundong coal[J]. J Fuel Chem Technol,2015,43(10):1176−1181.  doi: 10.3969/j.issn.0253−2409.2015.10.004

    11. [11]

      SHEN Min−ke, QIU Kun−zan, HUANG Zheng−yu, WANG Zhi−hua, LIU Jian−zhong. Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J Fuel Chem Technol,2015,43(9):1044−1051.  doi: 10.3969/j.issn.0253−2409.2015.09.004

    12. [12]

      WEI Bo, WANG Xue−bin, ZHANG Li−meng, TAN Hou−zhang, XU Tong−mo. Experimental research on the inpacts of Zhundong Coal blending waste silicon power on sodium transformation and ash fusion[J]. Electr pow,2014,47(10):98−102+116.

    13. [13]

      WANG Xue−bin, WEI bo, ZHANG Li−meng, TAN Hou−zhang, XU Tong−mo. Effect of temperature and silicon additives on occurrence and transformation characteristics of alkali metal in Zhundong coal[J]. Therm Power Gen,2014,43(8):84−88.  doi: 10.3969/j.issn.1002−3364.2014.08.084

    14. [14]

      MA Yan, HUANG Zheng−yu, TANG Hui−ru, WANG Zhi−hua, ZHOU Jun−hu, CEN Ke−fa. Mineral conversion of zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. J Fuel Chem Technol,2014,42(1):20−25.

    15. [15]

      ZHANG Xue−hui, WEI Bo, MA Rui, RUAN Ren−hui, TAN Hou−zhang. Evaluation of fusion characteristics of modified fly ash when used as slagging inhibitor for high alkali coal in Zhundong area[J]. Therm Power Gen,2019,48(1):43−48.

    16. [16]

      LIU Yan−quan, CHENG Le−ming, JI Jie−qiang, FANG Meng−xiang, WANG Qin−hui. Influence of additives on sodium release and ash sintering temperature of a high−alkali coal[J]. J Fuel Chem Technol,2018,46(11):1298−1304.  doi: 10.3969/j.issn.0253−2409.2018.11.003

    17. [17]

      GAO Man-da. Sodium behavior in Zhundong coal combustion and the effect of phosphorus−rich additives on combustion and ash fusion characteristics[D]. Beijing: North China Electric Power University, 2019.

    18. [18]

      GAO Man−da, SUN Bao−min, SU Yi−feng. Influence of NH4H2PO4 on ash composition and ash−forming characteristics during combustion of Zhundong coal[J]. Proc CSEE,2018,38(20):6012−6020.

    19. [19]

      WEI Li−hong, LIANG Fa−guang, FANG Fan, MA Ting−ting, YANG Tian−hua. Effect of phosphorus on ash fusion characteristics and mineral transformation during co−combustion of sewage and coal[J]. J Fuel Chem Technol,2019,47(2):129−137.  doi: 10.3969/j.issn.0253−2409.2019.02.001

    20. [20]

      GAO Shan-shan, JIN jing, LIU Dun-yu, WANG Yong-zhen, YAO Yu-xiang, KOU Xue-sen. Effect of vermiculite composite on the anti−slagging behavior during combustion of Zhundong coal[J]. Chem Ind Eng Prog,2017,36(9):3280−3286.

    21. [21]

      YAO Yu−xiang. The study of a new additive on reducing slagging and fouling during rhe combustion of Zhundong coal[D]. Shanghai: University of Shanghai for Science and Technology, 2017.

    22. [22]

      ZHOU Shang−kun, WANG Meng, TAN Hou−zhang, XIONG Xiao−he, LÜ Zhao−min, YANG Fu−xin. effect of vermiculite on the slagging characteristics of high sodium and high calcium Zhundong coal[J]. J Fuel Chem Technol,2019,47(4):419−427.

    23. [23]

      AKIYAMA K, PAK H, UEKI Y, YOSHⅡE R, NARUSE I. Effect of MgO addition to upgraded brown coal on ash−deposition behavior during combustion[J]. Fuel,2011,90(11):3230−3236.  doi: 10.1016/j.fuel.2011.06.041

    24. [24]

      YANG Yan−mei, ZHANG Hai, ZHANG Yang, WU Yu−Xin, LIU Qing. Effect of Si/Al/Na/Ca on ash fusion characteristics of Zhundong coal[J]. J Eng Thermophys,2018,39(8):1858−1863.

    25. [25]

      HAN Rui−wu, TAN Hou−zhang, WEI Bo, WANG Yi−bin, ZHANG Peng. Characteristics of layered ash deposition in Shell coal gasification syngas cooler[J]. CIESC J,2017,68(5):2148−2154.

    26. [26]

      WEI Bo, TAN Hou−zhang, WANG Xue−bin, YANG Tao, HAN Rui−wu, RUAN Ren−hui. Ash fusion characteristics under complex atmosphere in coal combustion process[J]. J Combust Sci Technol,2017,23(4):320−324.

    27. [27]

      ZHOU Yong−gang, FAN Jian−yong, LI Pei, WANG Bing−hui, ZHAO Hong. Mineral transmutation of high alkali Zhundong coal in ash melting process[J]. J Zhejiang Univ, Eng Sci,2015,49(8):1559−1564.

    28. [28]

      TAO Yu−jie, ZHANG Yan−wei, ZHOU Jun−hu, WANG Bing−hui, ZHAO Hong. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal’s combustion[J]. Proc CSEE,2015,35(5):1169−1175.

    29. [29]

      SHEN Min−ke. Research on sodium retent and ash fusion characteristics of Zhundong coal[D]. Hangzhou: Zhejiang University, 2016.

  • 加载中
    1. [1]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    3. [3]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    4. [4]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    8. [8]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    9. [9]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    15. [15]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    16. [16]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    17. [17]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

Metrics
  • PDF Downloads(5)
  • Abstract views(1622)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return