Citation: Ming-Shan ZHANG, Teng-Ya LI, Yu LEI, Yan WU, Shu-Hai HE. Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 236-244. doi: 10.19894/j.issn.1000-0518.200365 shu

Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework

  • Corresponding author: Shu-Hai HE, heshuhai1981@163.com
  • Received Date: 7 December 2020
    Accepted Date: 12 January 2021

Figures(6)

  • Three metal-organic frameworks (MIL-101(Cr), MIL-101(Cr)-SO3H, MIL-101(Cr)-NH2) were used as adsorbents, and the adsorption properties of sulfadiazine and sulfadiazine were compared in environment water under different pH conditions by solid phase dispersion extraction. With MIL-101(Cr) as the best adsorbent, the main factors affecting the efficiency of adsorption and desorption, such as the amount of adsorbent used, adsorption time, type and amount of desorption solvent, and desorption time were investigated. The optimized extraction conditions were as follows: 10.0 mL of sample solution (pH=9.0) was extracted with 6.0 mg of MIL-101(Cr) adsorbent for 4.0 min, the supernatant was removed by centrifugation, and the sample was resolved with 1.5 mL of 2% (volume fraction) formic acid-methanol solution for 10.0 min. The results show that the linear range of two sulfonamides are 5.0~8000 μg/L, and r>0.9990. The detection limits of the method are 0.05 μg/L to 0.08 μg/L. The recoveries of the three spiked concentrations are from 71.2% to 91.9%. The relative standard deviations (RSDs) are in the range of 3.1%~8.5%.
  • 加载中
    1. [1]

      ZHANG G D, DONG W P, LIU X H. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environ Chem, 2018,37(7):1491-1500.  

    2. [2]

      HARTMANN A, ALDER A C, KOLLER T. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater[J]. Environ Toxicol Chem, 1998,17(3):377-382. doi: 10.1002/etc.5620170305

    3. [3]

      YU S, LI J, MAO D Q. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater(sewage) treatment system[J]. Environ Sci, 2013,32(11):2059-2071.  

    4. [4]

      JIN L, JIANG L, HAN Q. Distribution characteristics and health risk assessment of thirteen sulfonamides antibiotics in a drinking water source in East China[J]. Environ Sci, 2013,32(11):2059-2071.  

    5. [5]

      BEN Y J, HU M, ZHANG X Y. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water[J]. Water Res, 2020,175115699. doi: 10.1016/j.watres.2020.115699

    6. [6]

      WU X Y, ZHOU H, ZHU R. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu bay, Taihu Lake[J]. Environ Sci, 2016,37(12):4596-4604.  

    7. [7]

      GURUGE K S, GOSWAMI P, TANOUE R. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Sci Total Environ, 2019,690:683-695. doi: 10.1016/j.scitotenv.2019.07.042

    8. [8]

      DU J, ZHAO H X, CHEN J W. Simultaneous determination of 23 antibiotics in mariculture water using solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese J Chromatogr, 2015,33(4):348-353.  

    9. [9]

      JIE Y W, YU C S, LI F F, et al. Distribution characteristic of antibiotics and antibiotic resistance genes in wastewater treatment plants[J/OL]. Environ Sci: 1-11[2021-01-08].https://doi.org/10.13227/j.hjkx.202005304.

    10. [10]

      ZHANG Q, XIN Q, ZHU J M. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environ Chem, 2014,33(7):1075-1083.  

    11. [11]

      YANG C X, YANG X Q, YAN X P. Preparation of metal-organic framework MIL-101(Cr) incorporated polymer monolithic column for on-line solid-phase extraction of phenols[J]. Chinese J Chromatogr, 2019,37(8):824-830.  

    12. [12]

      ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Micropor Mesopor Mater, 2004,73(1):3-14.  

    13. [13]

      LU X Q, WEI S X, WANG Z J. Design on experiment of gas capture and separation in nanoporous materials[J]. Exp Technol Manage, 2020,37(3):147-152, 164.  

    14. [14]

      ZHU M Y, CHEN Q, TONG W J. Preparation and application of Fe3O4 nanomaterials[J]. Prog Chem, 2017,29(11):1366-1394.  

    15. [15]

      CUI W, ZHANG W, LIU L. Adsorption behavior and mechanism of functional mental organic frameworks for sulfachloropyridazine in water.[J]. Environ Chem, 2020,39(1):80-88.  

    16. [16]

      HU H P, LIU S Q, CHEN C Y. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples[J]. Analyst, 2014,22(139):5818-5826.

    17. [17]

      JIANG S J, WANG H W. Preparation of magnetic metal organic framework Fe3O4@ZIF-8 and its high efficient adsorption towards azo dye Congo Red[J]. Chinese J Environ Eng, 2019,13(10):2347-2356.  

    18. [18]

      LI X M, WANG X K, WU Y Q. Determination of N-nitrosamines in water samples based on the solid-phase extraction with metal-organic framework[J]. Environ Chem, 2019,38(6):1258-1265.  

    19. [19]

      DHAKA S, KUMAR R, DEEP A. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coord Chem Rev, 2019,380:330-352.  

    20. [20]

      LIU K, ZHANG S, HU X. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: comparing DFT calculations with aqueous sorption experiments[J]. Environ Sci Technol, 2015,49(14):8657-65.

    21. [21]

      SHI W N, ZHU Y Q, SHEN C. Water sorption properties of functionalized MIL-101(Cr)-X (X=-NH2, -O3H, -H, -CH3, -F) based composites as thermochemical heat storage materials[J]. Micropor Mesopor Mater, 2019,285:129-136.

    22. [22]

      TANG K R, ZHANG Z T, LEI T. Determination of fluoroquinolone antibiotic in milk with graphene HF-SPME-HPLC[J]. Sci Technol Food Ind, 2019,40(18):243-249.  

    23. [23]

      GAO L, WANG P, CHEN Z X. Determination of 12 kinds of sulfonamide antibiotic residues in fishery water using magnetic solid phase extraction-ultra high performance liquid chromatography coupled with triple quadrupole massspectrometry[J]. Chinese Fish Qual Stand, 2020,10(1):36-42.  

    24. [24]

      WANG Y N, PENG J, XIE S. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Chem, 2020,39(1):188-196.  

    25. [25]

      SHEN Y Y, RAO G W, CAI J Y. Determination of sulfonamides in environmental water samples by liquid phase microextraction based on solidification of floating organic droplet coupled with high performance liquid chromatography[J]. Chem Anal Meter, 2020,29(5):49-53, 79.  

    26. [26]

      ZHANG M S, LI T Y, CAO X C. Determination of 19 sulfonamides residues in surface water by liquid-liquid extraction with UPLC-MS/MS[J]. Environ Pollut Control, 2020,42(7):838-842.  

    27. [27]

      FU J, ZHOU J J, LI J. Determination of 10 sulfonamides in drinking water by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Res Monit, 2019,32(1):1-5.  

    28. [28]

      ZHOU C Y, LUO J, WANG Y. Analysis of sulfonamides in environmental water samples by high performance liquid chromatography with online micro-solid-phase extraction[J]. J Instrum Anal, 2018,37(12):1451-1456.  

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(25)
  • Abstract views(4778)
  • HTML views(354)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return