Research Progress of Droplet Generation and Detection Technology of Microfluidic Chip
- Corresponding author: Jian-Guo CUI, cjg998@hotmail.com
Citation:
Jie ZHENG, Hong WANG, Yan-Peng YAN, Jian-Guo CUI. Research Progress of Droplet Generation and Detection Technology of Microfluidic Chip[J]. Chinese Journal of Applied Chemistry,
;2021, 38(1): 1-10.
doi:
10.19894/j.issn.1000-0518.200253
WEI Y Y, SUN Z Q, REN H H. Advances in microdroplet generation methods[J]. Chinese J Anal Chem, 2019,47(6):10-19.
CHEN J S, JIANG J H. Microfluidic droplet technology[J]. Chinese J Anal Chem, 2012,40(8):1293-1300.
THORSEN T, ROBERTS R W, Arnold F H. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys Rev Lett, 2001,86(18):4163-4166. doi: 10.1103/PhysRevLett.86.4163
TAN S H, SEMIN B T, BARET J C. Microfluidic flow-focusing in AC electric fields[J]. Lab Chip, 2014,14(6):1099-1106. doi: 10.1039/c3lc51143j
YANG D P, HUANG J R, ZHANG L J. An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide[J]. Chem Commun, 2010,46(25):4556-4558. doi: 10.1039/c000055h
PARK S Y, WU T H, CHEN Y. High-speed droplet generation on demand driven by pulse laser-induced cavitation[J]. Lab Chip, 2011,11(6)1010. doi: 10.1039/c0lc00555j
GU H, MURADE C U, Duits M H G. A microfluidic platform for on-demand formation and merging of microdroplets using electric control[J]. Biomicrofluidics, 2011,5(1)11101. doi: 10.1063/1.3570666
RODRIGUEZ-RODRIGUEZ J, SEVILLA A, MANUEL G J. Generation of microbubbles with applications to industry and medicine[J]. Annu Rev Fluid Mech, 2015,47(1):405-429. doi: 10.1146/annurev-fluid-010814-014658
CHOU W L, LEE P Y, YANG C L. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015,6(9):1249-1271. doi: 10.3390/mi6091249
CHENG Y N, CHEN Z H, LI J F. Overview of modern biomedical detection technology based on microfluidic[J]. Appl Chem Ind, 2018,47(6):1227-1231. doi: 10.3969/j.issn.1671-3206.2018.06.037
MOISEEVA E V, FLETCHER A A, HARNETT C K. Thin-film electrode based droplet detection for microfluidic systems[J]. Sens Actuators B Chem, 2011,155(1):408-414. doi: 10.1016/j.snb.2010.11.028
ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics-a review[J]. Anal Chim Acta, 2013,787:24-35. doi: 10.1016/j.aca.2013.04.064
NIU X, ZHANG M, PENG S. Real-time detection, control, and sorting of microfluidic droplets[J]. Biomicrofluidics, 2007,1(4)44101. doi: 10.1063/1.2795392
NISISAKO T, TORII T, HIGUCHI T. Droplet formation in a microchannel network[J]. Lab Chip, 2002,2(1)24. doi: 10.1039/B108740C
ZHANG J Z, CHEN W K, ZHOU N X. Experiment study on formation and length of droplets in T-junction microchannels[J]. J Zhejiang Univ(Eng Sci), 2020,54(5):1007-1013.
ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using "flow focusing" in microchannels[J]. Appl Phys Lett, 2003,82(3):364-366. doi: 10.1063/1.1537519
JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Appl Phys Sci, 2005,309(5736):887-888.
LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese J Theor Appl Mech, 2016,48(4):867-876.
CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem Eng Sci, 2004,59(15):3045-3058. doi: 10.1016/j.ces.2004.04.006
UTADA A S, FERNANDEZ-NIEVES A, STONE H A. Dripping to jetting transitions in coflowing liquid streams[J]. Phys Rev Lett, 2007,99(9)094502. doi: 10.1103/PhysRevLett.99.094502
CHEN H, ZHAO Y, LI J. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops[J]. Lab Chip, 2011,11(14):2312-2315. doi: 10.1039/c1lc20265k
WANG H, ZHENG J, YAN Y P. Droplet generation technology based on T-type cocurrent focusing method[J]. Chem Ind Eng Prog, 2020(5):291-298.
LEE C P, LAN T S, LAI M F. Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel[J]. J Appl Phys, 2014,115(17)17BB527.
CHURSKI K, MICHALSKI J, GARSTECKI P. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device[J]. Lab Chip, 2010,10(4):512-518. doi: 10.1039/B915155A
NGUYEN N T, TING T H, YAP Y F. Thermally mediated droplet formation in microchannels[J]. Appl Phys Lett, 2007,91(8)s10404.
BAROUD C N, DELVILLE J P, GALLAIRE F. Thermocapillary valve for droplet production and sorting[J]. Phys Rev E: Stat, Nonlinear, Soft Matter Phys, 2007,75(4)046302. doi: 10.1103/PhysRevE.75.046302
HAO G, MICHAEL H G D, FRIEDER M. A hybrid microfluidic chip with electrowetting functionality using ultraviolet(UV)-curable polymer[J]. Lab Chip, 2010,10(12):1550-1556. doi: 10.1039/c001524e
LINK D R, ERWAN GRASLAND-MONGRAIN, DURI A. Electric control of droplets in microfluidic devices[J]. Angew Chem, 2010,45(16):2556-2560.
LIU J, TAN S H, YAP Y F. Numerical and experimental investigations of the formation process of ferrofluid droplets[J]. Microfluid Nanofluid, 2011,11(2):177-187. doi: 10.1007/s10404-011-0784-7
TAN S H, NGUYEN N T, YOBAS L. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. J Micromech Microeng, 2010,20(4)045004. doi: 10.1088/0960-1317/20/4/045004
ZENG S, LI B, SU X. Microvalve-actuated precise control of individual droplets in microfluidic devices[J]. Lab Chip, 2009,9(10):1340-1343. doi: 10.1039/b821803j
CASTRO-HERNANDEZ E, GARCIA-SANCHEZ P, TAN S H. Breakup length of AC electrified jets in a microfluidic flowfocusing junction[J]. Microfluid Nanofluid, 2015,19(4):787-794. doi: 10.1007/s10404-015-1603-3
SRIVASTAVA N, BURNS M A. Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer[J]. Lab Chip, 2006,6(6):744-751. doi: 10.1039/b516317j
HUEBNER A, SRISA-ART M, HOLT D. Quantitative detection of protein expression in single cells using droplet microfluidics[J]. Chem Comm, 2007(12):1218-1220. doi: 10.1039/b618570c
CAHILL B P, LAND R, NACKE T. Contactless sensing of the conductivity of aqueous droplets in segmented flow[J]. Sens Actuators B, 2011,159(1):286-293. doi: 10.1016/j.snb.2011.07.006
TAO D, CÁTIA B. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices[J]. Sensor, 2015,15:2694-2708. doi: 10.3390/s150202694
ZHAO Y, XU Z, PARHIZKAR M. Magnetic liquid marbles, their manipulation and application in optical probing[J]. Microfluid Nanofluid, 2012,13(4):555-564. doi: 10.1007/s10404-012-0976-9
NGUYEN N T, LASSEMONO S, CHOLLET F A. Optical detection for droplet size control in microfluidic droplet-based analysis systems[J]. Sens Actuators B Chem, 2006,117(2):431-436. doi: 10.1016/j.snb.2005.12.010
JIANG G F, ATTIYA S, OCVIRK G. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis[J]. Biosens Bioelectron, 2000,14(10/11):861-869.
BASU A S. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab Chip, 2013,13(10):1892-1901. doi: 10.1039/c3lc50074h
CHEN H X, CHENG D, HU Z L. Application of image analysis in liquid droplet detection technology[J]. Transd Microsys Technol, 2016,35(4):157-160.
LI Z L, LI J L, CHEN Z G. Research progress of microfluidic chip technology in drug analysis[J]. J China Pharm, 2019,30(16):2279-2284.
WANG F, BURNS M A. Multiphase bioreaction microsystem with automated on chip droplet operation[J]. Lab Chip, 2010,10:1308-1315. doi: 10.1039/b925705e
JORG S, GRODRIAN A, ROBERT R. Online optical detection of food contaminants in microdroplets[J]. Eng Life Sci, 2009,9(5):391-397. doi: 10.1002/elsc.200800127
UWE P, DIETER F, MARKUS S. Testing miniaturized electrodes for impedance measurements within the β-dispersion-a practical approach[J]. J Electr Bioimp, 2010,1:41-55.
JIN Y, LUO G A. Fabrication of the microfluidic chips with integrated ultra-micro electrodes and its application in on-chip electrochemical detection[J]. J Chem Chinese Univ, 2003,24(7):1180-1184. doi: 10.3321/j.issn:0251-0790.2003.07.006
YANG W D. Impedance detection of droplets in microfluidic chip[D]. Dalian: Dalian University of Technology, 2013.
LUO C, YANG X, FU Q. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation[J]. Electrophoresis, 2006,27(10):1977-1983. doi: 10.1002/elps.200500665
ELBUKEN C, GLAWDEL T, CHAN D. Detection of microdroplet size and speed using capacitive sensors[J]. Sens Actuator A, 2011,171(2):55-62. doi: 10.1016/j.sna.2011.07.007
DEMORI M, FERRARI V, POESIO P. A microfluidic capacitance sensor for fluid discrimination and characterization[J]. Sens Actuator A, 2011,172(1):212-219. doi: 10.1016/j.sna.2011.07.013
HU X, LIN X, HE Q. Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes[J]. J Electroanal Chem, 2014,726(24):7-14.
ISGOR P K, MARCALI M, KESER M. Microfluidic droplet content detection using integrated capacitive sensors[J]. Sens Actuators B, 2015,210:669-675. doi: 10.1016/j.snb.2015.01.018
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
A.Structure diagram of T-type microfluidic chip; B.Oil water interface under microscope
A.Schematic diagram of common current device; B.Schematic diagram of flow focusing device; C.Combined flow and flow focusing combination device for double emulsion generation
A.Structure design diagram of micro valve; B.Schematic design of four different sample droplet arrays
A.Trajectory of droplets sorted to the lower and upper channel; B.Scatter plots of droplet trajectories dispersed in the upper and lower channels
A)Droplets of different sizes passed through the detection electrode; B)Electrical signals corresponding to droplets of different sizes