Potential High-Performance Anode Material for Potassium Ion Batteries: Antimony
- Corresponding author: Shuai LIU, liushuai6980@ouc.edu.cn Huan-Lei WANG, huanleiwang@ouc.edu.cn
Citation:
Guang-Zeng CHENG, Shuai LIU, Huan-Lei WANG. Potential High-Performance Anode Material for Potassium Ion Batteries: Antimony[J]. Chinese Journal of Applied Chemistry,
;2021, 38(2): 170-180.
doi:
10.19894/j.issn.1000-0518.200243
PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci, 2013,6(8):2338-2360. doi: 10.1039/c3ee40847g
TAO L, YANG Y, WANG H. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms[J]. Energy Storage Mater, 2020,27:212-225. doi: 10.1016/j.ensm.2020.02.004
LU G, WANG H, ZHENG Y. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium and potassium-ion storage[J]. Electrochim Acta, 2019,319:541-551. doi: 10.1016/j.electacta.2019.07.026
FAN L, LIU Q, CHEN S. Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017,13(30)1701011. doi: 10.1002/smll.201701011
RAJAGOPALAN R, TANG Y, JI X. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Adv Funct Mater, 2020,30(12)1909486. doi: 10.1002/adfm.201909486
WU X, CHEN Y, XING Z. Advanced carbon-based anodes for potassium-ion batteries[J]. Adv Energy Mater, 2019,9(21)1900343. doi: 10.1002/aenm.201900343
SONG K, LIU C, MI L. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small, 20191903194.
XIONG P, WU J, ZHOU M. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries[J]. ACS Nano, 2019,14(1):1018-1026.
KIM D S, BAE J, KWON S H. Synergistic effect of antimony-triselenide on addition of conductive hybrid matrix for high-performance lithium-ion batteries[J]. J Alloys Comp, 2020,828154410. doi: 10.1016/j.jallcom.2020.154410
ZHAO Y, MANTHIRAM A. High-capacity, high-rate Bi-Sb Alloy anodes for lithium-ion and sodium-ion batteries[J]. Chem Mater, 2015,27(8):3096-3101. doi: 10.1021/acs.chemmater.5b00616
WANG J, FAN L, LIU Z. In situ alloying strategy for exceptional potassium ion batteries[J]. ACS Nano, 2019,13(3):3703-3713. doi: 10.1021/acsnano.9b00634
GAO H, NIU J, ZHANG C. A dealloying synthetic strategy for nanoporous bismuth antimony anodes for sodium ion batteries[J]. ACS Nano, 2018,12(4):3568-3577. doi: 10.1021/acsnano.8b00643
ZHENG W, YU X, GUO Z. Magnetron sputtering deposition of MSb (M=Fe, Ni, Co) thin films as negative electrodes for Li-ion and Na-ion batteries[J]. Mater Res Express, 2019,6(5)056410. doi: 10.1088/2053-1591/ab00cd
WANG S, XIONG P, GUO X. A stable conversion and alloying anode for potassium-ion batteries: a combined strategy of encapsulation and confinement[J]. Adv Funct Mater, 20202001588.
GABAUDAN V, BERTHELOT R, STIEVANO L. Inside the alloy mechanism of Sb and Bi electrodes for K-Ion batteries[J]. J Phys Chem C, 2018,122(32):18266-18273. doi: 10.1021/acs.jpcc.8b04575
FAN S, SUN T, RUI X. Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries[J]. J Power Sources, 2012,201:288-293. doi: 10.1016/j.jpowsour.2011.10.137
HUANG Z, CHEN Z, DING S. Multi-protection from nano channels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries[J]. Solid State Ionics, 2018,324:267-275. doi: 10.1016/j.ssi.2018.07.019
YANG K, TANG J, LIU Y. Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage[J]. ACS Nano, 2020,14(5):5728-5737. doi: 10.1021/acsnano.0c00366
YUAN Y, JAN S, WANG Z. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries[J]. J Mater Chem A, 2018,6(14):5555-5559. doi: 10.1039/C8TA00592C
PHAM X M, NGO D T, LEH T T. A self-encapsulated porous Sb-C nanocomposite anode with excellent Na-ion storage performance[J]. Nanoscale, 2018,10(41):19399-19408. doi: 10.1039/C8NR06182C
GABAUDAN V, TOUJA J, COT D. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries[J]. Electrochem Common, 2019,105106493. doi: 10.1016/j.elecom.2019.106493
HAN Y, LI T, LI Y. Stabilizing antimony nanocrystals within ultrathin carbon nano sheets for high-performance K-ion storage[J]. Energy Storage Mater, 2019,20:46-54. doi: 10.1016/j.ensm.2018.11.004
YI Z, LIN N, ZHANG W. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism[J]. Nanoscale, 2018,10(27):13236-13241. doi: 10.1039/C8NR03829E
LUO W, LI F, ZHANG W. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries[J]. Nano Res, 2019,12(5):1025-1031. doi: 10.1007/s12274-019-2335-6
LIU S, FENG J, BIAN X. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2016,9(4):1229-1236. doi: 10.1039/C5EE03699B
WANG H, WU X, QI X. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018,103:32-37. doi: 10.1016/j.materresbull.2018.03.018
AN Y, TIAN Y, CI L. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries[J]. ACS Nano, 2018,12(12):12932-12940. doi: 10.1021/acsnano.8b08740
LIANG L, XU Y, WANG C. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries[J]. Energy Environ Sci, 2015,8(10):2954-2962. doi: 10.1039/C5EE00878F
WANG Z M, YI Z, ZHONG M. Research progress of Sb based anode materials for lithium Ion batteries[J]. Chinese J Appl Chem, 2018,35(7):745-755.
ZHANG Y J, ZHANG J F, DUAN J G. Research progress of Sb based anode materials for sodium ion batteries[J]. Materials Reports, 2020,34(11):11106-11113.
LIU Q, FAN L, CHEN S. Antimony-graphite composites for a high-performance potassium-ion battery[J]. Energy Technol, 2019,7(10)1900634. doi: 10.1002/ente.201900634
KO Y N, CHOI S H, KIM H. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms[J]. ACS Appl Mater Interfaces, 2019,11(31):27973-27981. doi: 10.1021/acsami.9b08929
YANG X, ZHANG R. High-capacity graphene-confined antimony nanoparticles as a promising anode material for potassium-ion batteries[J]. J Alloys Compd, 2020155191.
CHENG N, ZHAO J, FAN L. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode[J]. Chem Commun, 2019,55(83):12511-12514. doi: 10.1039/C9CC06561J
WANG H, WU X, QI X. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018,103:32-37. doi: 10.1016/j.materresbull.2018.03.018
HAN C, HAN K, WANG X. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries[J]. Nanoscale, 2018,10(15):6820-6826. doi: 10.1039/C8NR00237A
ZHENG J, YANG Y, FAN X. Extremely Stable antimony carbon composite anodes for potassium-ion batteries[J]. Energy Environ Sci, 2019,12(2):615-623. doi: 10.1039/C8EE02836B
LIU D, YANG L, CHEN Z. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Sci Bull, 2020,65(12):1003-1012. doi: 10.1016/j.scib.2020.03.019
GUO S, LI H, LU Y. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers[J]. Energy Storage Mater, 2020,27:270-278. doi: 10.1016/j.ensm.2020.02.003
GABAUDAN V, BERTHELOT R, SOUGRATI M T. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb[J]. J Mater Chem A, 2019,7(25):15262-15270. doi: 10.1039/C9TA03760H
WANG Z, DONG K, WANG D. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries[J]. J Mater Chem A, 2019,7(23):14309-14318. doi: 10.1039/C9TA03851E
HAN J, ZHU K, LIU P. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. J Mater Chem A, 2019,7(44):25268-25273. doi: 10.1039/C9TA09643D
ZHANG Y, LI M, HUANG F. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries[J]. Appl Surf Sci, 2020,499143907. doi: 10.1016/j.apsusc.2019.143907
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042