Citation: Yong-Yan GUO, Yan-Fei TIAN, Ming-Ming DANG, Ping YANG, Yun-Fei LONG. Preparation of Thiourea Coordinated Chromium Black T Stabilized Silver Nanoclusters under Alkaline Environment[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 195-201. doi: 10.19894/j.issn.1000-0518.200174 shu

Preparation of Thiourea Coordinated Chromium Black T Stabilized Silver Nanoclusters under Alkaline Environment

  • Corresponding author: Yun-Fei LONG, l_yunfei927@163.com
  • Received Date: 8 June 2020
    Accepted Date: 30 September 2020

    Fund Project: the National Natural Science Foundation of China 21275047the Natural Science Foundation of Hu′nan Province 2016JJ5005

Figures(9)

  • Silver nanoclusters have a wide range of application prospects because they have special physical and chemical properties. Since they are prone to agglomeration, it is of great significance to explore the method of preparing silver nanoclusters with strong fluorescence, high stablility and small particle sizes. A method for the rapid preparation of silver nanoclusters in alkaline environment with chromium black T as stabilizer and thiourea as coordination stabilizer was developed in this paper. Under the optimal conditions, the average particle size of the prepared silver nanoclusters is 1.67 nm, the particle size is mainly in the range of 0.74~3.33 nm, the lattice spacing is 0.2157 nm, and the lattice type is (102). The maximum excitation wavelength is 380 nm, the maximum emission wavelength is 463 nm, and the quantum yield is 1.64%.
  • 加载中
    1. [1]

      RITCHIE C M, JOHNSEN K R, KISER J R. Ag nanocluster formation using a cytosineoligonucleotide template[J]. J Phys Chem, 2007,111(1):175-181.

    2. [2]

      GE L, SUN X, HONG Q. Ratiometric nanocluster beacon: a label-free and sensitive fluorescent DNA detection platform[J]. ACS Appl Mater Interface, 2017,9(15):13102-13110. doi: 10.1021/acsami.7b03198

    3. [3]

      WANG W M, LI J, FAN J L. Ultrasensitive and non-labeling fluore-scence assay for biothiols using enhanced silver nanoclusters[J]. Sens Actuators B, 2018,267(4):174-180.

    4. [4]

      WANG J, ZHANG Z Y, GAO X. A single fluorophore ratiometric nanosensor based on dual-mmission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection[J]. Sens Actuators B, 2019,282(3):712-718.  

    5. [5]

      LI D, QIAO Z Z, YU Y R. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging[J]. Chem Commun, 2018,54(9):1089-1092. doi: 10.1039/C7CC08228B

    6. [6]

      LONG S J, LIU Y, DONG X N. Preparation and characterization of silver nanoparticales and its antibacterial property[J]. J Gansu Normal Univ, 2017,22(6):20-24.  

    7. [7]

      WANG L, HUANG Y, LI C. Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance[J]. Phys Chem Phys, 2015,17(8):5878-5886. doi: 10.1039/C4CP05556J

    8. [8]

      TAGHIZADEH M T, VATANPARAST M. Ultrasonic-assisted synthysis of ZrO2 nanoparticles and their application to improve the chemical stability of nafion membrane in proton exchange membrane(PEM) fuel cells[J]. J Colloid Interface Sci, 2016,483(8):1-10.  

    9. [9]

      WU F, LIN Q, WANG L L. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant[J]. Talanta, 2020,207(8):120257-120263.  

    10. [10]

      HU Y, JIA Y, LIAO Y W. Fluorometric assay of iron(Ⅱ) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters[J]. Spectrochim Acta, Part A, 2020,225(1):117519-117529.

    11. [11]

      FENG J J, ZHANG G, CHAI R T. Silver-nanocluster fluorescent probes for detection of L-cysteine[J]. Chinese J Anal Lab, 2020,39(1):48-52.  

    12. [12]

      LI Z Y, LI Y, GUO H X. Determination of malachite green using silver nanoparticles as fluorescent probes[J]. J Anal Sci, 2019,35(4):489-492.  

    13. [13]

      CERRETANI C, VOSCH T. Switchable dual-emissive DNA-stabilized silver nanoclusters[J]. ACS Omega, 2019,4(4):7895-7902. doi: 10.1021/acsomega.9b00614

    14. [14]

      LING Y, WANG L, ZHANG X Y. Ratiometric fluorescence detection of dopamine based on effect of ligand on the emission of Ag nanoclusters and aggregation-induced emission enhancement[J]. Sens Actuators B, 2020,310(5):858-861.  

    15. [15]

      LEE C Y, PARK K S, JUNG Y K. A label-free fluores-cent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nano-composite[J]. Biosens Bioelectron, 2017,93(7):293-297.

    16. [16]

      SONG C Z, WANG W H. Study on application conditions of solid-state chromium black T indicator[J]. Yunnan Chem Technol, 2019,46(3):130-131.  

    17. [17]

      LI S L. Analysis of three dimensional fluorescence spectra and determination of active components of Chinese medicine Rhubarb[D]. Shijiazhuang: Hebei Normal University, 2009.

    18. [18]

      LIU H M. The synthsis and application of carbon dots and sliver nanocluster[D]. Xiangtan: Hunan University of Science and Technology, 2017.

    19. [19]

      LU K Y, KONG L C, PAN H Y. Green Preparation and bacteria imaging of thermo-sensitive Cu-Ag fluorescent nanoclusters[J]. J Instrum Anal, 2018,37(10):1258-1263.  

    20. [20]

      GUO Y Y, ZENG W W, YANG P. Synthesis of silver nanoclusters stabilized by pH-regulated chromotropic acid 2R[J]. Chinese J Appl Chem, 2020,37(1):54-60.  

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    12. [12]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    13. [13]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(23)
  • Abstract views(3090)
  • HTML views(463)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return