Citation: Ling-Pan LU, Jia-Jun WU, Kai-Ti WANG. Preparation of Long-Chain Branched Polyethylene Catalyzed by Tandem Catalytic System[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 69-76. doi: 10.19894/j.issn.1000-0518.200170 shu

Preparation of Long-Chain Branched Polyethylene Catalyzed by Tandem Catalytic System

  • Corresponding author: Kai-Ti WANG, ktwang@cqut.edu.cn
  • Received Date: 5 June 2020
    Accepted Date: 13 August 2020

    Fund Project: the National Natural Science Foundation of China 21801033the Innovation Research Group at Institutions of Higher Education in Chongqing CXQT19027

Figures(6)

  • Two tandem catalytic systems, Cat.Ⅰ/Cat.Ⅱ {Cat.Ⅰ: [ArNCH-C8H3(CH2)2(C6H5)O]2ZrBn2; Cat.Ⅱ: (η5-C5Me4)Si(Me)2NtBuTiCl2} and Cat.Ⅰ/Cat.Ⅲ (Cat.Ⅲ: tans-Et(Ind)2ZrCl2), were employed respectively to prepare long chain branched polyethylene (LCBPE) by using ethylene as the sole monomer. Ethylene is initially acted upon by Cat.Ⅰ to give ethylene oligomers with terminal vinyl groups. Subsequently, the copolymerization of the resultant oligomers with ethylene is promoted by Cat.Ⅱ and Cat.Ⅲ respectively and affords long chain branched polyethylene (LCBPE). By varying the molar ratio of Cat.Ⅰ/Cat.Ⅱ as well as Cat.Ⅰ/Cat.Ⅲ, a series of LCBPEs with controllable branching molar fraction (0.84%~3.95%) was prepared successfully. All of these obtained polymers exhibits a unimodal distribution, indicating that all of the obtained polymers are pure LCBPEs rather than the blends of ethylene oligomers and linear PE. The LCBPEs show lower crystallinity than the linear PE. Because of the entanglement of the long chain branches, the resultant LCBPEs show more obvious shear-thinning phenomenon and higher elongation. However, the lower crystallinity of the LCBPEs results in lower tensile strength.
  • 加载中
    1. [1]

      STADLER F J, ARIKAN-CONLEY B, KASCHTA J. Synthesis and characterization of novel ethylene-graft-ethylene/propylene copolymers[J]. Macromolecules, 2011,44:5053-5063. doi: 10.1021/ma200588r

    2. [2]

      LI H, ROJAS G, WAGENER K B. Precision long-chain branched polyethylene via acyclic diene metathesis polymerization[J]. ACS Macro Lett, 2015,4:1225-1228. doi: 10.1021/acsmacrolett.5b00641

    3. [3]

      MOORTHI K, KAMIO J K, DOROS R. Monte Carlo simulation of short chain branched polyolefins: structure and properties[J]. Macromolecules, 2012,45:8453-8466. doi: 10.1021/ma301322v

    4. [4]

      NA Y, DAI S, CHEN C. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE)[J]. Macromolecules, 2018,51:4040-4048. doi: 10.1021/acs.macromol.8b00467

    5. [5]

      LIAN K, ZHU Y, LI W. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization[J]. Macromolecules, 2017,50:6074-6080. doi: 10.1021/acs.macromol.7b01087

    6. [6]

      VEGA J F, SANTAMARÍA A, MUÑOZ-ESCALONA A. Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes[J]. Macromolecules, 1998,31:3639-3647. doi: 10.1021/ma9708961

    7. [7]

      MALMBERG A, GABERIEL C, STEFFL T. Long-Chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry[J]. Macromolecules, 2002,35:1038-1048. doi: 10.1021/ma010753l

    8. [8]

      GIBSON V C, SPITZMESSER S K. Advances in non-metallocene olefin polymerization Catalysis[J]. Chem Rev, 2003,103:283-316. doi: 10.1021/cr980461r

    9. [9]

      WU J Q, LI Y S. Well-defined vanadium complexes as the catalysts for olefin polymerization[J]. Coord Chem Rev, 2011,255:2303-2314. doi: 10.1016/j.ccr.2011.01.048

    10. [10]

      MAKIO H, TERAO H, IWASHITA A. FI catalysts for olefin polymerization-a comprehensive treatment[J]. Chem Rev, 2011,111:2363-2449. doi: 10.1021/cr100294r

    11. [11]

      NOMURA K, ZHANG S. Design of vanadium complex catalysts for precise olefin polymerization[J]. Chem Rev, 2011,111:2342-2362. doi: 10.1021/cr100207h

    12. [12]

      TANG L M, HU T, PAN L. Ethylene/α-olefin copolymerization with bis(β-enaminoketonato) titanium complexes activated with modified methylaluminoxane[J]. J Polym Sci Part A: Polym Chem, 2005,43:6323-6330. doi: 10.1002/pola.21112

    13. [13]

      ZHANG S W, LI Y G, LU L P. Ethylene polymerization and ethylene/hexene copolymerizaion with vandium catalysts bearing thiophenolphosphine ligands[J]. Chinese J Polym Sci, 2013,31:885-893. doi: 10.1007/s10118-013-1282-z

    14. [14]

      ZHANG W J, HUANG W, LIANG T L. Half-titanocene chlorides 2-(benzimidazol-2-yl)quinolin-8-olates: synthesis, characterization and ethylene (co-)polymerization behavior[J]. Chinese J Polym Sci, 2013,31:601-609. doi: 10.1007/s10118-013-1253-4

    15. [15]

      LU L P, MU J S, LI Y S. Copolymerization of ethylene with 10-undecen-1-ol using highly active vanadium(Ⅲ) precatalysts bearing bis(imino)pyrrolyl ligands[J]. Chinese J Polym Sci, 2014,32:603-608. doi: 10.1007/s10118-014-1436-7

    16. [16]

      NOMURA K, OYA K, IMANISHI Y. Ethylene/α-olefin copolymerization by various nonbridged (cyclopentadienyl)(aryloxy)titanium(Ⅳ) complexes-MAO catalyst system[J]. J Mol Catal A: Chem, 2001,174:127-140. doi: 10.1016/S1381-1169(01)00196-0

    17. [17]

      GUO C Y, PEULECKE N, KINDERMANN M K. Copolymerization of ethylene with linear α-olefins by 2-phosphinophenolate nickel catalysts[J]. J Polym Sci Part A: Polym Chem, 2009,47:258-266. doi: 10.1002/pola.23150

    18. [18]

      JONGSOMJIT B, KAEWKRAJANG P, SHIONO T. Supporting effects of silica-supported methylaluminoxane (MAO) with zirconocene catalyst on ethylene/1-olefin copolymerization behaviors for linear low-density polyethylene (LLDPE) production[J]. Ind Eng Chem Res, 2004,43:7959-7963. doi: 10.1021/ie049548v

    19. [19]

      WASILKE J C, OBREY S J, BAKER R T. Concurrent tandem catalysis[J]. Chem Rev, 2005,105:1001-1020. doi: 10.1021/cr020018n

    20. [20]

      ROBERT C, THOMAS C M. Tandem catalysis: a new approach to polymers[J]. Chem Soc Rev, 2013,42:9392-9402. doi: 10.1039/c3cs60287g

    21. [21]

      CHEN M, CHEN C. Direct and tandem routes for the copolymerization of ethylene with polar functionalized internal olefins[J]. Angew Chem Int Ed, 2020,59:1206-1210. doi: 10.1002/anie.201913088

    22. [22]

      BAZAN G C, KOMON Z J A. Synthesis of branched polyethylene by tandem catalysis[J]. Macromol Rapid Commun, 2001,22:467-478. doi: 10.1002/1521-3927(20010401)22:7<467::AID-MARC467>3.0.CO;2-O

    23. [23]

      SOUZA R F D, JR O L C. Recent advances in olefin polymerization using binary catalyst systems[J]. Macromol Rapid Commun, 2001,22:1293-1301. doi: 10.1002/1521-3927(20011101)22:16<1293::AID-MARC1293>3.0.CO;2-O

    24. [24]

      BARNHART R W, BAZAN G C. Synthesis of branched polyolefins using a combination of homogeneous metallocene mimics[J]. J Am Chem Soc, 1998,120:1082-1083. doi: 10.1021/ja9735867

    25. [25]

      KOMON Z J A, BU X, BAZAN G C. Synthesis of butene-ethylene and hexene-butene-ethylene copolymers from ethylene via tandem action of well-defined homogeneous catalysts[J]. J Am Chem Soc, 2000,122:1830-1831. doi: 10.1021/ja994222c

    26. [26]

      QUIJADA R, ROJAS R, BANZA G. Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalysts[J]. Macromolecules, 2001,34:2411-2417. doi: 10.1021/ma0012088

    27. [27]

      KOMON Z J A, DIAMOND G M, LECLERC M K. Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures[J]. J Am Chem Soc, 2002,124:15280-15285. doi: 10.1021/ja0283551

    28. [28]

      MUSIKABHUMMA K, SPANIOL T P, OKUDA J. Synthesis of branched polyethylenes by the tandem catalysis of silica-supported linked cyclopentadienyl-amido titanium catalysts and a homogeneous dibromo nickel catalyst having a pyridylimine ligand[J]. J Polym Sci Part A: Polym Chem, 2003,41:528-544.

    29. [29]

      YE Z, ALOBAIDI F, ZHU S. A tandem catalytic system for the synthesis of ethylene-hex-1-ene copolymers from ethylene stock[J]. Macromol Rapid Commun, 2004,25:647-652. doi: 10.1002/marc.200300162

    30. [30]

      SCHWERDTFEGER E D, PRICE C J, CHAI J. Tandem catalyst system for linear low-density polyethylene with short and long branching[J]. Macromolecules, 2010,43:4838-4842. doi: 10.1021/ma100545q

    31. [31]

      LIU S, MOTTA A, DELFERRO M. Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for highly branched polyethylenes[J]. J Am Chem Soc, 2013,135:8830-8833. doi: 10.1021/ja4039505

    32. [32]

      MALMBERG A, KOKKO E, LEHMUS P. Long-chain branched polyethene polymerized by metallocene catalysts Et [Ind]2ZrCl2/MAO and Et [IndH4]2ZrCl2/MAO[J]. Macromolecules, 1998,31:8448-8454. doi: 10.1021/ma980522n

    33. [33]

      BEIGZADEH D, SOARES J B P, DUEVER T. A. Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene[J]. Macromol Rapid Commun, 1999,20:541-545. doi: 10.1002/(SICI)1521-3927(19991001)20:10<541::AID-MARC541>3.0.CO;2-E

    34. [34]

      SPERBER O, KAMINSKY W. Synthesis of long-chain branched comp-structured polyethylene from ethylene by tandem action of two single-site catalysts[J]. Macromolecules, 2003,36:9014-9019. doi: 10.1021/ma0346310

    35. [35]

      WANG K T, WANG Y X, WANG B. Novel zirconium complexes with constrained cyclic β-enaminoketonato ligands: improved catalytic capability toward ethylene polymerization[J]. Dalton Trans, 2016,45:10308-10318. doi: 10.1039/C6DT01391K

    36. [36]

      HONG M. Development of facile and efficient strategy to high-performance functional polyolefin[D]. Changchun: Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, 2012.

    37. [37]

      HARRISON D, COULTER I M, WANG S. Olefin polymerization using supported metallocene catalysts: development of high activity catalysts for use in slurry and gas phase ethylene polymerizations[J]. J Mol Catal A: Chem, 1998,128:65-77. doi: 10.1016/S1381-1169(97)00163-5

    38. [38]

      QUIJADA R, NARVÁEZ A, ROJAS R. Synthesis and characterization of copolymers of ethylene and 1-octadecene using the rac-Et(Ind)2ZrCl2/MAO catalyst system[J]. Macromol Chem Phys, 1999,200:1306-1310. doi: 10.1002/(SICI)1521-3935(19990601)200:6<1306::AID-MACP1306>3.0.CO;2-4

    39. [39]

      GALLAND G B, SOUZA R F D, MAULER R S. 13C NMR determination of the composition of linear low-density polyethylene obtained with [η3-methallyl-nickle-diimine]PF6 complex[J]. Macromolecules, 1999,32:1620-1625. doi: 10.1021/ma981669h

    40. [40]

      CLAS S D, HEYDING R D, MCFADDIN D C. Crystallinities of copolymers of ethylene and 1-alkenes[J]. J Polym Sci Part B: Polym Phys, 1988,26:1271-1286. doi: 10.1002/polb.1988.090260611

  • 加载中
    1. [1]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    2. [2]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(14)
  • Abstract views(2631)
  • HTML views(473)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return