Citation: Lin LI, Si-Hua QIAN, Tian-Qi LYU, Yu-Hui WANG, Jian-Ping ZHENG. Recent Progress of Library Construction for Next-generation Sequencing[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 11-23. doi: 10.19894/j.issn.1000-0518.200158 shu

Recent Progress of Library Construction for Next-generation Sequencing

  • Corresponding author: Yu-Hui WANG, wangyuhui@nimte.ac.cn Jian-Ping ZHENG, zhengjianping@nimte.ac.cn
  • Received Date: 25 May 2020
    Accepted Date: 10 December 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY20B050003Ningbo 3315 Innovation Team 2019A-14-Cthe Major Science and Technology Projects in Ningbo 2016C50009

Figures(5)

  • High-throughput next-generation sequencing (NGS) is a revolutionary technology in gene sequencing. It is widely used in various solutions in biomedical-relevant fields. Library preparation with high quality and low-cost is the key for NGS. With the development of such sequencing platforms, different library preparation technologies have been built. However, these technologies also possess their own strengths and weaknesses. In this review, we first summarized various library preparation methods for NGS, then discussed the complete process of library preparation in single cell sequencing. We hope that this review can help researchers on the optimal selection of library preparation strategies and also offer suggestions for the development of new NGS library preparation technologies, especially in the exploitation of homebred kits.
  • 加载中
    1. [1]

      LIU W. Human genome project[J]. Adv Biochem Biophys, 2001,28(002):135-136.

    2. [2]

      SHAHEENUZZAMN M D, LIU T X, SHI S D. Development of sequencing technology and role of next generation sequencing technology in wheat research: a review[J]. Pak J Bot, 2020,52(5):1867-1878.  

    3. [3]

      SANGER F. Sequences, sequences, and sequences[J]. Annu Rev Biochem, 1988,57(1):1-28. doi: 10.1146/annurev.bi.57.070188.000245

    4. [4]

      METZKER M L. Applications of next-generation sequencing technologies-the next generation[J]. Nat Rev Genet, 2010,11(1):31-46. doi: 10.1038/nrg2626

    5. [5]

      LAISSUE P, VAIMAN D. Exploring the molecular aetiology of preeclampsia by massive parallel sequencing of DNA[J]. Curr Hypertens Rep, 2020,22(4):1-10. doi: 10.1007/s11906-020-01039-z

    6. [6]

      GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rew Genet, 2016,17(6):333-351.

    7. [7]

      NGUYEN H T, TRAN D H, NGO Q D. Evaluation of a liquid biopsy protocol using ultra-deep massive parallel sequencing for detecting and quantifying circulation tumor DNA in colorectal cancer patients[J]. Cancer Invest, 2020,38(2):85-93. doi: 10.1080/07357907.2020.1713350

    8. [8]

      ZHANG H Y, LIU R J, YAN C. Advantage of next-generation sequencing in dynamic monitoring of circulating tumor DNA over droplet digital PCR in cetuximab treated colorectal cancer patients[J]. Trasl Oncol, 2019,12(3):426-431. doi: 10.1016/j.tranon.2018.11.015

    9. [9]

      CHEN Z, HUANG W, FU G. Current situation and prospects of the human genome project[J]. Chinese J Nat, 2000,22(3):125-133. doi: 10.3969/j.issn.0253-9608.2000.03.001

    10. [10]

      STARK R, GRZELAK M, GENETICS J. RNA sequencing: the teenage years[J]. Nat Rew Genet, 2019,20(11):631-656. doi: 10.1038/s41576-019-0150-2

    11. [11]

      QIN D H. Next-generation sequencing and its clinical application[J]. Cancer Biol Med, 2019,16(1):4-10.

    12. [12]

      TRAPNELL C, ROBERTS A, GOFF L. Differential gene and transcript expression analysis of RNA-seq experiments with tophat and cufflinks[J]. Nat Protoc, 2012,7(3):562-578. doi: 10.1038/nprot.2012.016

    13. [13]

      TIAN L, ZHANG Y, ZHAO Y F. Development and application of new generation sequencing technology[J]. Biotech Bull, 2015,31(11):1-8.  

    14. [14]

      KNIERIM E, LUCKE B, SCHWARZ J M. Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing[J]. Plos Ones, 2011,6(11):1-6.  

    15. [15]

      SUN Z K, WANG F, DING F M, et al. A one-step approach and application to DNA terminal repair/additon of dA: CN, 201610040334.O[P]. 2016-05-11.

    16. [16]

      FENG Y Y, CHAI Z, ZHANG H, et al. Increased stability of the sequencing library adaptor: CN 111139533.A[P]. 2020-05-12.

    17. [17]

      ZHENG J, SHI C, SHEN D. Compositions and methods for preparing sequencing libraries: US, 20160349152.[P]. 2016-12-01.

    18. [18]

      MARINE R, POLSON S W, RAVEL J. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA[J]. Appl Environ Microbiol, 2011,77(22):8071-8079. doi: 10.1128/AEM.05610-11

    19. [19]

      KIA A, GLOECKNER C, OSOTHPRAROP T. Improved genome sequencing using an engineered transposase[J]. BMC Biotechnol, 2017,17(6):1-10.  

    20. [20]

      JOUALI F, MARCHOUDI N, ANSARI F Z. SARS-CoV-2 genome sequence from Morocco, obtained using ion AmpliSeq technology[J]. Microbiol Resour Announ, 2020,9(31):1-3.  

    21. [21]

      CUI K, WU W W, DIAO Q Y. Application and research progress on transcriptomics[J]. Biotech Bull, 2019,35(7):1-9.  

    22. [22]

      HAN Y X, GAO S G, MUEGGE K. Advanced applications of RNA sequencing and challenges[J]. Bioinf Biol Insights, 2015,9(S1):29-46.  

    23. [23]

      PISANO M P, TABONE O, BODINIER M. RNA-seq transcriptome analysis reveals LTR-retrotransposons modulation in human perpheral blood monouclear cells(PBMCs) after in vivo lipopolysaccharides(LPS) injection[J]. J Virol, 2020,94(19):1-25.  

    24. [24]

      HRDLICKOVA R, TOLOUE M, TIAN B. RNA-seq methods for transcriptome analysis[J]. WIRES RNA, 2017,8(1):1-24.  

    25. [25]

      HERBERT Z T, KERSHNER J P, BUTTY V L. Cross-site comparison of ribosomal depletion kits for illumina RNAseq library construction[J]. BMC Genomics, 2018,19(199):1-10.  

    26. [26]

      BUSH S J, MCCULLOCH M E B, SUMMERS K M. Integration of quantitated expression estimates from polyA-selected and rRNA-depleted RNA-seq libraries[J]. BMC Bioinf, 2017,18(18):301-315.  

    27. [27]

      CULVINER P H, GUEGLER C K, LAUB M T. A Simple, Cost-effective, and robust method for rRNA depletion in RNA-sequencing studies[J]. mBio, 2020,11(2):10-20.  

    28. [28]

      ZHULIDOW P A, BOGDANOVA E A, SHCHEGLOV A S. Simple cDNA normalization using kamchatka crab duplex-specific nuclease[J]. Nucl Acids Res, 2004,32(3):1-8.  

    29. [29]

      SHRMA C M, HAFFMANN S, DARFEUILLE F. The primary transcriptome of the major human pathogen helicobacter pylori[J]. Nature, 2010,464(11):250-255.  

    30. [30]

      DRUSIN S I, RASIA R M, ORENO D M. Study of the role of Mg2+ in dsRNA processing mechanism by bacterial RNAse III through QM/MM simulations[J]. J Biol Inorg Chem, 2020,25(1):89-98. doi: 10.1007/s00775-019-01741-7

    31. [31]

      HEAD S R, KOMORI H K, LAMERE S A. Library construction for next-generation sequencing: overviews and challenges[J]. Biotechniques, 2014,56(2):61-64.  

    32. [32]

      KURN N, CHEN P C, HEATH J D. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications[J]. Clin Chem, 2005,51(10):1973-1981. doi: 10.1373/clinchem.2005.053694

    33. [33]

      SARANTOPOULOU D, TANG S Y, RICCIOTTI E. Comparative evaluation of RNA-Seq library preparation methods for strand-specifcity and low input[J]. Sci Rep, 2019,9(7091):1-10.  

    34. [34]

      LEVIN J Z, YASSOUR M, ADICONIS X A. Comprehensive comparative analysis of strand-specific RNA sequencing methods[J]. Nat Meth, 2010,7(9):709-715. doi: 10.1038/nmeth.1491

    35. [35]

      PARKHOMCHUK D, BORODINA T, AMSTISLAVSKIY V. Transcriptome analysis by strand-specific sequencing of complementary DNA[J]. Nucl Acids Res, 2009,37(18):1-10.  

    36. [36]

      MAGNOLIA B, NATHALIE B, ALISA L. Strand-specific transcriptome sequencing using SMART technology[J]. Curr Protoc Mol Biol, 2016,116(1):1-18.  

    37. [37]

      HAFNER M, LANDFRAF P, LUDWIG J. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing[J]. Methods, 2008,44(1):3-12. doi: 10.1016/j.ymeth.2007.09.009

    38. [38]

      VIOLLET S, FUCHS R T, MUNAFO D B. T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis[J]. BMC Biotech, 2011,11(72):1-14.  

    39. [39]

      MAN L N, YANG J B, DING Y F. Research progress on three generation sequencing technology and its application[J]. China Anim Husb Vet Med, 2019,46(8):2245-2256.  

    40. [40]

      XU Y K, MA Y, HU X X. Analysis of prospective microbiology research using third-generation sequencing technology[J]. Biodivers Sci, 2019,27(5):534-542.  

    41. [41]

      ARDUI S, ADAM A, VERMEESCH J R. Single molecule real-time(SMRT) sequencing comes of age: application and utilities for medical diagnostics[J]. Nucl Acids Res, 2018,46(5):2159-2168. doi: 10.1093/nar/gky066

    42. [42]

      JAIN M, OLSEN H E, PATEN B. The oxford nanopore minion: delivery of nanopore sequencing to the genomics community[J]. Genome Biol, 2016,17(239):1-12.  

    43. [43]

      LEVENE M J, KORLACH J, TURNER S W. Zero-mode waveguides for single-molecule analysis at high concentrations[J]. Science, 2003,299(5607):682-686. doi: 10.1126/science.1079700

    44. [44]

      TRAVERS K J, CHINE C S, RANK D R. A flexible and efficient template format for circular consensus sequencing and SNP detection[J]. Nucl Acids Res, 2010,38(15):1-8.  

    45. [45]

      WANG S Y, ZHAO Z Y, HAQUE F Z. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis[J]. Curr Opin Biotechnol, 2018,51:80-89. doi: 10.1016/j.copbio.2017.11.006

    46. [46]

      GENG J, GUO P X. Membrane-embedded channel of bacteriophage phi29 DNA-packaging motor for single molecule sensing and nanomedicine[J]. Chin Bull Life Sci, 2011,23(11):1114-1129.  

    47. [47]

      WEN L, TANG F C. Recent progresses in single-cell transcriptome analysis[J]. Chinese Bull Life Sci, 2014,26(3):228-233.  

    48. [48]

      ZHAO L N, ZHAO X H. Single cell sequencing analysis of circulating tumor cells: a new horizon of liquid biopsy[J]. Chinese Bull Life Sci, 2018,30(1):63-72.  

    49. [49]

      ZHENG C H, ZHENG L T, YOO J. Landscape of infiltrating T Cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017,169(7):1342-1356. doi: 10.1016/j.cell.2017.05.035

    50. [50]

      GUO X Y, ZHANG Y Y, ZHENG L T. Global characterization of T Cell in non-small-cell lung cancer by single-cell sequencing[J]. Nat Med, 2018,24(7):978-985. doi: 10.1038/s41591-018-0045-3

    51. [51]

      LI J C, XU K Q. Single cell RNA sequencing technology and its applications[J]. Chem Life, 2020,40(8):1208-1219.  

    52. [52]

      WU C H, WANG Y W, CHENG X. Application of microfluidic chip in single cell capture[J]. Sci Tech Leader, 2018,36(16):39-45.  

    53. [53]

      WU A R, NEFF N F, KALISKY T. Quantitative assessment of single-cell RNA-sequencing methods[J]. Nat Meth, 2014,11(1):41-46. doi: 10.1038/nmeth.2694

    54. [54]

      MACOSKO E Z, BASU A, SATIJA R. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015,161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002

    55. [55]

      KLEIN A M, MAZUTIS L, AKARTUNA I. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015,161(5):1187-1201. doi: 10.1016/j.cell.2015.04.044

    56. [56]

      ZHENG G, TERRY J M, BELGRADER P. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017,8(14049):1-12.  

    57. [57]

      AZIZI E, CARR A J, PLITAS G. Single cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018,174(5):1293-1308. doi: 10.1016/j.cell.2018.05.060

    58. [58]

      HAN X P, WANG R Y, ZHOU Y C. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018,22(172):1091-1107.  

    59. [59]

      YANG Z N, HAO S, CHENG T. New Advances in single cell transcriptomic sequencing technology and its application in hematopoietic system[J]. Sci Chinese Life Sci, 2020,50(3):287-295.  

    60. [60]

      HASHIMSHONY T, SENDEROVICH N, AVITAL G. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016,17(77):1-7.  

    61. [61]

      FU Y S, LI C M, LU S J. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification[J]. Proc Natl Acad Sci, 2015,112(38):11923-11928. doi: 10.1073/pnas.1513988112

    62. [62]

      CHU W K, EDGE P, LEE H S. Ultraaccurate genome sequencing and haplotyping of single human cells[J]. Proc Natl Acad Sci, 2017,114(47):12512-12517. doi: 10.1073/pnas.1707609114

    63. [63]

      CHAPMAN A R, HE Z, LU S J. Single cell transcriptome amplification with MALBAC[J]. PLoS ONE, 2015,10(3):1-12.  

    64. [64]

      CHEN C Y, XING D, TAN L Z. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI)[J]. Science, 2017,356(6334):189-194. doi: 10.1126/science.aak9787

    65. [65]

      ZAHN H, STEIF A, LAKS E. Scalable whole-genome single-cell library preparation without preamplification[J]. Nat Meth, 2017,14(2):167-173. doi: 10.1038/nmeth.4140

    66. [66]

      RAMSKOLD D, LUO S, WANG Y C. Full-length mRNA-seq from single cell levels of RNA and individual circulating tumor cells[J]. Nat Biotech, 2012,30(8):777-782. doi: 10.1038/nbt.2282

    67. [67]

      POCELLI S, BJORKLUND A K, FARIDANI O R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Meth, 2013,10(11):1096-1098. doi: 10.1038/nmeth.2639

    68. [68]

      ZIEGENHAIN C, VIETH B, PAREKH S. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017,65(4):631-643. doi: 10.1016/j.molcel.2017.01.023

    69. [69]

      YAN H, WANG S Z, JIAO Y C, et al. A Fast method for constructing an amplicon library: CN, 107012139.A[P]. 2017-08-04.

    70. [70]

      DI L, SUN Y, LI J. RNA sequencing by direct tagmentation of RNA/DNA hybrids[J]. Proc Natl Acad Sci, 2020,117(6):2886-2893. doi: 10.1073/pnas.1919800117

    71. [71]

      ROSENBERG A B, ROCO C M, MUSCAT R A. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018,360(6385):176-182. doi: 10.1126/science.aam8999

  • 加载中
    1. [1]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    2. [2]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    3. [3]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    8. [8]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(292)
  • Abstract views(7290)
  • HTML views(2754)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return