Citation: YU Chun-Miao,  WANG Ye-Sheng,  ZHU Zhen-Tong,  LI Bing-Ling. Structure Analysis of Large Size Assembly with Solid-state Nanopore[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 842-850. doi: 10.19756/j.issn.0253-3820.231088 shu

Structure Analysis of Large Size Assembly with Solid-state Nanopore

  • Corresponding author: LI Bing-Ling, binglingli@ciac.ac.cn
  • Received Date: 9 March 2023
    Revised Date: 27 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22074136, 22004102) and the Cooperation Funding of Changchun with Chinese academy of sciences (No. 21SH16).

  • In recent years, with the rapid development of nanopore sequencing technique, more attention are paid to nanopore. With the development of nucleic acid amplification techniques, the function of DNA has been expanded from a carrier of genetic information to a programmable functional material, and the need for the characterization of DNA assembly is increasingly emerging. However, traditional characterization methods are often unable to provide comprehensive structural information of DNA assembly, and some methods cannot be used in a homogeneous environment. Therefore, a variety of technologies should be combined to complete the characterization. Solid-state nanopore is a kind of characterization method that can complement existing techniques. Taking a four-hairpin hybridization chain reaction (HCR) as the model, the dumbbell and the G-quadruplex on the side-chain of HCR duplex concatamers in homogeneous solution were distinguished in this study. The current offset of the single-side dumbbell structure assembly was about 10 pA, while in the presence of K+, the current offset of the G-quadruplex structure assembly increased nearly 4 times. Moreover, the reaction process and reaction products of the concatenated hybridization chain reaction(C-HCR) were analyzed in detail, and the difference in current of assemblies was obviously detected. With the increase of dimension of structure, the current offset increased exponentially. This study paved the way for the subsequent detection of more levels of cascade hybridization chain reaction system. Solid-state nanopores were expected to be an effective means of characterizing DNA nanostructure, such as analyzing finer nanostructures or distinguishing mixed nanostructures in complex samples.
  • 加载中
    1. [1]

      DEKKER C. Nat. Nanotechnol., 2007, 2(4):209-215.

    2. [2]

      VARONGCHAYAKUL N, SONG J, MELLER A, GRINSTAFF M W. Chem. Soc. Rev., 2018, 47(23):8512-8524.

    3. [3]

      HU Z, HUO M, YING Y, LONG Y. Angew. Chem. Int. Ed., 2021, 60(27):14738-14749.

    4. [4]

      LIU Y, WANG K, WANG Y, WANG L, YAN S, DU X, ZHANG P, CHEN H Y, HUANG S. J. Am. Chem. Soc., 2022, 144(2):757-768.

    5. [5]

      KASIANOWICZ J J, BRANDIN E, BRANTON D, DEAMER D W. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(24):13770-13773.

    6. [6]

      LIU L, WU H C. Angew. Chem. Int. Ed., 2016, 55(49):15216-15222.

    7. [7]

      CAO C, YING Y L, HU Z L, LIAO D F, TIAN H, LONG Y T. Nat. Nanotechnol., 2016, 11(8):713-718.

    8. [8]

      LI J, STEIN D, MCMULLAN C, BRANTON D, AZIZ M J, GOLOVCHENKO J A. Nature, 2001, 412(6843):166-169.

    9. [9]

      ZHANG S, LI M, SU B, SHAO Y. Annu. Rev. Anal. Chem., 2018, 11(1):265-286.

    10. [10]

      GOPFRICH K, LI C Y, RICCI M, BHAMIDIMARRI S P, YOO J, GYENES B, OHMANN A, WINTERHALTER M, AKSIMENTIEV A, KEYSER U F. ACS Nano, 2016, 10(9):8207-8214.

    11. [11]

      LEE K, PARK K B, KIM H J, YU J S, CHAE H, KIM H M, KIM K B. Adv. Mater., 2018, 30(42):1704680.

    12. [12]

      DING T, YANG J, PAN V, ZHAO N, LU Z, KE Y, ZHANG C. Nucleic Acids Res., 2020, 48(6):2791-2806.

    13. [13]

      SHARMA R K, AGRAWAL I, DAI L, DOYLE P S, GARAJ S. Nat. Commun., 2019, 10(1):4473.

    14. [14]

      CHEN K, GULAREK F, LIU B, WEINHOLD E, KEYSER U F. ACS Nano, 2021, 15(2):2679-2685.

    15. [15]

      BELL N A W, CHEN K, GHOSAL S, RICCI M, KEYSER U F. Nat. Commun., 2017, 8(1):380.

    16. [16]

      WILNER O I, WILLNER I. Chem. Rev., 2012, 112(4):2528-2556.

    17. [17]

      TORRING T, VOIGT N V, NANGREAVE J, YAN H, GOTHELF K V. Chem. Soc. Rev., 2011, 40(12):5636-5646.

    18. [18]

      DU R R, CEDRONE E, ROMANOV A, FALKOVICH R, DOBROVOLSKAIA M A, BATHE M. ACS Nano, 2022, 16(12):20340-20352.

    19. [19]

      DIRKS R M, PIERCE N A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(43):15275-15278.

    20. [20]

      BI S, YUE S, ZHANG S. Chem. Soc. Rev., 2017, 46(14):4281-4298.

    21. [21]

      SUN H, YAO F, SU Z, KANG X F. Biosens. Bioelectron., 2020, 150:111906.

    22. [22]

      CHU H, ZHAO J, MI Y, ZHAO Y, LI L. Angew. Chem. Int. Ed., 2019, 58(42):14877-14881.

    23. [23]

      WEI J, GONG X, WANG Q, PAN M, LIU X, LIU J, XIA F, WANG F. Chem. Sci., 2018, 9(1):52-61.

    24. [24]

      LI L, FENG J, LIU H, LI Q, TONG L, TANG B. Chem. Sci., 2016, 7(3):1940-1945.

    25. [25]

      XUAN F, HSING I M. J. Am. Chem. Soc., 2014, 136(28):9810-9813.

    26. [26]

      ZHU Z, ZHOU Y, XU X, WU R, JIN Y, LI B. Anal. Chem., 2018, 90(1):814-820.

    27. [27]

      YU C, WANG Y, WU R, ZHU Z, LI B. ACS Appl. Bio Mater., 2021, 4(4):3649-3657.

    28. [28]

      WU R, ZHU Z, XU X, YU C, LI B. Nanoscale, 2019, 11(21):10339-10347.

    29. [29]

      WU R, WANG Y, ZHU Z, YU C, LI H, LI B, DONG S. ACS Appl. Mater. Interfaces, 2021, 13(8):9482-9490.

    30. [30]

      LI B, JIANG Y, CHEN X, ELLINGTON A D. J. Am. Chem. Soc., 2012, 134(34):13918-13921.

    31. [31]

      ZHU J, BOŠKOVIĆ F, KEYSER U F. Nano Lett., 2022, 22(12):4993-4998.

    32. [32]

      WILLIAMSON J R, RAGHURAMAN M K, CECH T R. Cell, 1989, 59(5):871-880.

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    8. [8]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    15. [15]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    18. [18]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(7)
  • Abstract views(1811)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return