Citation:
WANG Xiao-Yu, WEI Hui. Advance in Peroxidase-like Nanozymes and Their Analytical Applications[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 666-680.
doi:
10.19756/j.issn.0253-3820.231056
-
Among different nanozymes, peroxidase-like nanozymes have attracted extensive attention because of their great prospects in biosensing, bioimaging and disease treatment. By combining experiments with computational studies, several reports have elucidated the catalytic mechanism and structure-activity relationship of peroxidase-like nanozymes. Furthermore, to enable the rational design of highly active peroxidase-like nanozymes, several pioneering studies have developed numerous descriptors that can be used to predict their catalytic activity. These rationally designed highly active nanozymes have been used for in vitro and in vivo assays. This review first focused on the progress in the rational design of peroxidase-like nanozymes, and then introduced some typical examples of the analytical applications of peroxidase-like nanozymes. In addition, the key issues and challenges faced by peroxidase-like nanozymes were summarized and their further development directions were prospected.
-
-
-
[1]
WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.
-
[2]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[3]
WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.
-
[4]
FAN K, CAO C, PAN Y, LU D, YANG D, FENG J, SONG L, LIANG M, YAN X. Nat. Nanotechnol., 2012, 7(7):459-464.
-
[5]
TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.
-
[6]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[7]
HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.
-
[8]
JIANG D, NI D, ROSENKRANS Z T, HUANG P, YAN X, CAI W. Chem. Soc. Rev., 2019, 48(14):3683-3704.
-
[9]
DING H, CAI Y, GAO L, LIANG M, MIAO B, WU H, LIU Y, XIE N, TANG A, FAN K, YAN X, NIE G. Nano Lett., 2019, 19(1):203-209.
-
[10]
LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T, LIU H. Angew. Chem. Int. Ed., 2019, 58(36):12624-12631.
-
[11]
ZHEN W, LIU Y, WANG W, ZHANG M, HU W, JIA X, WANG C, JIANG X. Angew. Chem. Int. Ed., 2020, 59(24):9491- 9497.
-
[12]
LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.
-
[13]
FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.
-
[14]
HU Y, GAO X J, ZHU Y, MUHAMMAD F, TAN S, CAO W, LIN S, JIN Z, GAO X, WEI H. Chem. Mater., 2018, 30(18):6431-6439.
-
[15]
WANG X, GAO X J, QIN L, WANG C, SONG L, ZHOU Y N, ZHU G, CAO W, LIN S, ZHOU L, WANG K, ZHANG H, JIN Z, WANG P, GAO X, WEI H. Nat. Commun., 2019, 10(1):704.
-
[16]
XU B, WANG H, WANG W, GAO L, LI S, PAN X, WANG H, YANG H, MENG X, WU Q, ZHENG L, CHEN S, SHI X, FAN K, YAN X, LIU H. Angew. Chem. Int. Ed., 2019, 58(15):4911-4916.
-
[17]
SHEN X, WANG Z, GAO X, ZHAO Y. ACS Catal., 2020, 10(21):12657-12665.
-
[18]
LU X, GAO S, LIN H, YU L, HAN Y, ZHU P, BAO W, YAO H, CHEN Y, SHI J. Adv. Mater., 2020, 32:2002246.
-
[19]
WANG Z, ZHANG R, YAN X, FAN K. Mater. Today, 2020, 41:81-119.
-
[20]
DONG J, SONG L, YIN J J, HE W, WU Y, GU N, ZHANG Y. ACS Appl. Mater. Interfaces, 2014, 6(3):1959-1970.
-
[21]
LI S, ZHANG Y, WANG Q, LIN A, WEI H. Anal. Chem., 2022, 94(1):312-323.
-
[22]
SCHLÖGL R. Angew. Chem. Int. Ed., 2015, 54(11):3465-3520.
-
[23]
ZHAO R, ZHAO X, GAO X. Chem. Eur. J., 2015, 21(3):960-964.
-
[24]
SHEN X, WANG Z, GAO X J, GAO X. Adv. Mater., 2023:e2211151.
-
[25]
LIN S, WEI H. Sci. China Life Sci., 2019, 62(5):710-712.
-
[26]
KIM M S, LEE J, KIM H S, CHO A, SHIM K H, LE T N, AN S S A, HAN J W, KIM M I, LEE J. Adv. Funct. Mater., 2020, 30(1):1905410.
-
[27]
JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem. Int. Ed., 2020, 59(7):2565-2576.
-
[28]
WANG X, QIN L, ZHOU M, LOU Z, WEI H. Anal. Chem., 2018, 90(19):11696-11702.
-
[29]
HE W, WU X, LIU J, HU X, ZHANG K, HOU S, ZHOU W, XIE S. Chem. Mater., 2010, 22(9):2988-2994.
-
[30]
XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.
-
[31]
LI Z, YANG X, YANG Y, TAN Y, HE Y, LIU M, LIU X, YUAN Q. Chem. Eur. J., 2018, 24(2):409-415.
-
[32]
IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25):22102-22112.
-
[33]
KIM M S, CHO S, JOO S H, LEE J, KWAK S K, KIM M I, LEE J. ACS Nano, 2019, 13(4):4312-4321.
-
[34]
GUO W, ZHANG M, LOU Z, ZHOU M, WANG P, WEI H. ChemCatChem, 2019, 11(2):737-743.
-
[35]
LIANG Q, XI J, GAO X J, ZHANG R, YANG Y, GAO X, YAN X, GAO L, FAN K. Nano Today, 2020, 35:100935.
-
[36]
ZHU Y, WU J, HAN L, WANG X, LI W, GUO H, WEI H. Anal. Chem., 2020, 92(11):7444-7452.
-
[37]
FENG L, ZHANG L, ZHANG S, CHEN X, LI P, GAO Y, XIE S, ZHANG A, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(15):17547-17556.
-
[38]
LI S, ZHAO X, GANG R, CAO B, WANG H. Anal. Chem., 2020, 92(7):5152-5157.
-
[39]
XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.
-
[40]
XI Z, GAO W, XIA X. ChemBioChem, 2020, 21(17):2440-2444.
-
[41]
HE W, ZHOU Y T, WAMER W G, HU X, WU X, ZHENG Z, BOUDREAU M D, YIN J J. Biomaterials, 2013, 34(3):765- 773.
-
[42]
FU Y, ZHAO X, ZHANG J, LI W. J. Phys. Chem. C, 2014, 118(31):18116-18125.
-
[43]
PENG F F, ZHANG Y, GU N. Chin. Chem. Lett., 2008, 19(6):730-733.
-
[44]
AHMED S R, TAKEMEURA K, LI T C, KITAMOTO N, TANAKA T, SUZUKI T, PARK E Y. Biosens. Bioelectron., 2017, 87:558-565.
-
[45]
LIU X, WU J, LIU Q, LIN A, LI S, ZHANG Y, WANG Q, LI T, AN X, ZHOU Z, YANG M, WEI H. J. Mater. Chem. B, 2021, 9(35):7238-7245.
-
[46]
NILSSON A, PETTERSSON L G M, HAMMER B, BLIGAARD T, CHRISTENSEN C H, NRSKOV J K. Catal. Lett., 2005, 100(3-4):111-114.
-
[47]
LIU S, LU F, XING R, ZHU J. Chem. Eur. J., 2011, 17(2):620-625.
-
[48]
WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J, GE C. Adv. Funct. Mater., 2018, 28(28), 1801484.
-
[49]
TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Science, 2007, 316(5825):732-735.
-
[50]
ZHAO Z J, LIU S, ZHA S, CHENG D, STUDT F, HENKELMAN G, GONG J. Nat. Rev. Mater., 2019, 4(12):792-804.
-
[51]
WANG Q, LI C, WANG X, PU J, ZHANG S, LIANG L, CHEN L, LIU R, ZUO W, ZHANG H, TAO Y, GAO X, WEI H. Nano Lett., 2022, 22(24):10003-10009.
-
[52]
BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. J. Catal., 2004, 224(1):206-217.
-
[53]
ZHUANG J, MIDGLEY A C, WEI Y, LIU Q, KONG D, HUANG X. Adv. Mater., 2023:e2210848.
-
[54]
LI T, WANG Y, LIU W, FEI H, GUO C, WEI H. Angew. Chem. Int. Ed., 2023, 62(12):e202212438.
-
[55]
WANG X, QIN L, LIN M, XING H, WEI H. Anal. Chem., 2019, 91(16):10648-10656.
-
[56]
LUO F, LIN Y, ZHENG L, LIN X, CHI Y. ACS Appl. Mater. Interfaces, 2015, 7(21):11322-11329.
-
[57]
HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.
-
[58]
CHENG H, ZHANG L, HE J, GUO W, ZHOU Z, ZHANG X, NIE S, WEI H. Anal. Chem., 2016, 88(10):5489-5497.
-
[59]
WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.
-
[60]
KARYAKIN A A, PUGANOVA E A, BUDASHOV I A, KUROCHKIN I N, KARYAKINA E E, LEVCHENKO V A, MATVEYENKO V N, VARFOLOMEYEV S D. Anal. Chem., 2004, 76(2):474-478.
-
[61]
KIM M I, YE Y, WON B Y, SHIN S, LEE J, PARK H G. Adv. Funct. Mater., 2011, 21(15):2868-2875.
-
[62]
ZHANG C, CHEN C, ZHAO D, KANG G, LIU F, YANG F, LU Y, SUN J. Anal. Chem., 2022, 94(8):3485-3493.
-
[63]
FENG J, HUANG P, SHI S, DENG K Y, WU F Y. Anal. Chim. Acta, 2017, 967:64-69.
-
[64]
LOU Z, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23):15267-15274.
-
[65]
NI P, DAI H, WANG Y, SUN Y, SHI Y, HU J, LI Z. Biosens. Bioelectron., 2014, 60:286-291.
-
[66]
CHEN W, ZHANG X, LI J, CHEN L, WANG N, YU S, LI G, XIONG L, JU H. Anal. Chem., 2020, 92(3):2714-2721.
-
[67]
ZHANG G Y, DENG S Y, CAI W R, COSNIER S, ZHANG X J, SHAN D. Anal. Chem., 2015, 87(17):9093-9100.
-
[68]
LING P, LEI J, ZHANG L, JU H. Anal. Chem., 2015, 87(7):3957-3963.
-
[69]
LI X, LI X, LI D, ZHAO M, WU H, SHEN B, LIU P, DING S. Biosens. Bioelectron., 2020, 168:112554.
-
[70]
TIAN L, QI J, ODERINDE O, YAO C, SONG W, WANG Y. Biosens. Bioelectron., 2018, 110:110-117.
-
[71]
BROTO M, KAMINSKI M M, ADRIANUS C, KIM N, GREENSMITH R, DISSANAYAKE-PERERA S, SCHUBERT A J, TAN X, KIM H, DIGHE A S, COLLINS J J, STEVENS M M. Nat. Nanotechnol., 2022, 17(10):1120-1126.
-
[72]
SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.
-
[73]
GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.
-
[74]
CHAU L Y, HE Q, QIN A, YIP S P, LEE T M H. J. Mater. Chem. B, 2016, 4(23):4076-4083.
-
[75]
DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X, KOBINGER G P, GAO G F, YAN X. Biosens. Bioelectron., 2015, 74:134-141.
-
[76]
LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2021, 173:112817.
-
[77]
JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.
-
[78]
TANG Y, WU Y, XU W, JIAO L, CHEN Y, SHA M, YE H R, GU W, ZHU C. Anal. Chem., 2022, 94(2):1022-1028.
-
[79]
WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.
-
[80]
HU L, LIAO H, FENG L, WANG M, FU W. Anal. Chem., 2018, 90(10):6247-6252.
-
[81]
CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.
-
[82]
WANG Y M, LIU J W, ADKINS G B, SHEN W, TRINH M P, DUAN L Y, JIANG J H, ZHONG W. Anal. Chem., 2017, 89(22):12327-12333.
-
[83]
BORIACHEK K, MASUD M K, PALMA C, PHAN H P, YAMAUCHI Y, HOSSAIN M S A, NGUYEN N T, SALOMON C, SHIDDIKY M J A. Anal. Chem., 2019, 91(6):3827-3834.
-
[84]
ZHANG L N, DENG H H, LIN F L, XU X W, WENG S H, LIU A L, LIN X H, XIA X H, CHEN W. Anal. Chem., 2014, 86(5):2711-2718.
-
[85]
LI J, WANG J, WANG Y, TRAU M. Analyst, 2017, 142(24):4788-4793.
-
[86]
LIN Y, LIU K, YU P, XIANG L, LI X, MAO L. Anal. Chem., 2007, 79(24):9577-9583.
-
[87]
SARDESAI N P, GANESANA M, KARIMI A, LEITER J C, ANDREESCU S. Anal. Chem., 2015, 87(5):2996-3003.
-
[88]
DING Y, REN G, WANG G, LU M, LIU J, LI K, LIN Y. Anal. Chem., 2020, 92(6):4583-4591.
-
[89]
LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, LIN Y, NAJER A, BEKDEMIR A, CHEN Q, BHATIA S N, STEVENS M M. Nat. Nanotechnol., 2019, 14(9):883-890.
-
[1]
-
-
-
[1]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[2]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[3]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[4]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[5]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[6]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[7]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[10]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[11]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[12]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[13]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[14]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[16]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[19]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[20]
Haiying Wei , Daqing Yang , Mingtao Run , Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068
-
[1]
Metrics
- PDF Downloads(45)
- Abstract views(1656)
- HTML views(205)