Citation: WANG Xiao-Yu,  WEI Hui. Advance in Peroxidase-like Nanozymes and Their Analytical Applications[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 666-680. doi: 10.19756/j.issn.0253-3820.231056 shu

Advance in Peroxidase-like Nanozymes and Their Analytical Applications

  • Corresponding author: WANG Xiao-Yu,  WEI Hui, 
  • Received Date: 17 February 2023
    Revised Date: 19 April 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22104055, 21874067, 21722503), the National Key R&D Program of China (Nos. 2021YFF1200700, 2019YFA0709200), the Priority Academic Program Development Jiangsu Higher Education Institutions Program and the Fundamental Research Funds for the Central Universities of China (Nos. 202200325, 021314380195).

  • Among different nanozymes, peroxidase-like nanozymes have attracted extensive attention because of their great prospects in biosensing, bioimaging and disease treatment. By combining experiments with computational studies, several reports have elucidated the catalytic mechanism and structure-activity relationship of peroxidase-like nanozymes. Furthermore, to enable the rational design of highly active peroxidase-like nanozymes, several pioneering studies have developed numerous descriptors that can be used to predict their catalytic activity. These rationally designed highly active nanozymes have been used for in vitro and in vivo assays. This review first focused on the progress in the rational design of peroxidase-like nanozymes, and then introduced some typical examples of the analytical applications of peroxidase-like nanozymes. In addition, the key issues and challenges faced by peroxidase-like nanozymes were summarized and their further development directions were prospected.
  • 加载中
    1. [1]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    2. [2]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    3. [3]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    4. [4]

      FAN K, CAO C, PAN Y, LU D, YANG D, FENG J, SONG L, LIANG M, YAN X. Nat. Nanotechnol., 2012, 7(7):459-464.

    5. [5]

      TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.

    6. [6]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    7. [7]

      HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.

    8. [8]

      JIANG D, NI D, ROSENKRANS Z T, HUANG P, YAN X, CAI W. Chem. Soc. Rev., 2019, 48(14):3683-3704.

    9. [9]

      DING H, CAI Y, GAO L, LIANG M, MIAO B, WU H, LIU Y, XIE N, TANG A, FAN K, YAN X, NIE G. Nano Lett., 2019, 19(1):203-209.

    10. [10]

      LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T, LIU H. Angew. Chem. Int. Ed., 2019, 58(36):12624-12631.

    11. [11]

      ZHEN W, LIU Y, WANG W, ZHANG M, HU W, JIA X, WANG C, JIANG X. Angew. Chem. Int. Ed., 2020, 59(24):9491- 9497.

    12. [12]

      LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.

    13. [13]

      FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.

    14. [14]

      HU Y, GAO X J, ZHU Y, MUHAMMAD F, TAN S, CAO W, LIN S, JIN Z, GAO X, WEI H. Chem. Mater., 2018, 30(18):6431-6439.

    15. [15]

      WANG X, GAO X J, QIN L, WANG C, SONG L, ZHOU Y N, ZHU G, CAO W, LIN S, ZHOU L, WANG K, ZHANG H, JIN Z, WANG P, GAO X, WEI H. Nat. Commun., 2019, 10(1):704.

    16. [16]

      XU B, WANG H, WANG W, GAO L, LI S, PAN X, WANG H, YANG H, MENG X, WU Q, ZHENG L, CHEN S, SHI X, FAN K, YAN X, LIU H. Angew. Chem. Int. Ed., 2019, 58(15):4911-4916.

    17. [17]

      SHEN X, WANG Z, GAO X, ZHAO Y. ACS Catal., 2020, 10(21):12657-12665.

    18. [18]

      LU X, GAO S, LIN H, YU L, HAN Y, ZHU P, BAO W, YAO H, CHEN Y, SHI J. Adv. Mater., 2020, 32:2002246.

    19. [19]

      WANG Z, ZHANG R, YAN X, FAN K. Mater. Today, 2020, 41:81-119.

    20. [20]

      DONG J, SONG L, YIN J J, HE W, WU Y, GU N, ZHANG Y. ACS Appl. Mater. Interfaces, 2014, 6(3):1959-1970.

    21. [21]

      LI S, ZHANG Y, WANG Q, LIN A, WEI H. Anal. Chem., 2022, 94(1):312-323.

    22. [22]

      SCHLÖGL R. Angew. Chem. Int. Ed., 2015, 54(11):3465-3520.

    23. [23]

      ZHAO R, ZHAO X, GAO X. Chem. Eur. J., 2015, 21(3):960-964.

    24. [24]

      SHEN X, WANG Z, GAO X J, GAO X. Adv. Mater., 2023:e2211151.

    25. [25]

      LIN S, WEI H. Sci. China Life Sci., 2019, 62(5):710-712.

    26. [26]

      KIM M S, LEE J, KIM H S, CHO A, SHIM K H, LE T N, AN S S A, HAN J W, KIM M I, LEE J. Adv. Funct. Mater., 2020, 30(1):1905410.

    27. [27]

      JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem. Int. Ed., 2020, 59(7):2565-2576.

    28. [28]

      WANG X, QIN L, ZHOU M, LOU Z, WEI H. Anal. Chem., 2018, 90(19):11696-11702.

    29. [29]

      HE W, WU X, LIU J, HU X, ZHANG K, HOU S, ZHOU W, XIE S. Chem. Mater., 2010, 22(9):2988-2994.

    30. [30]

      XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.

    31. [31]

      LI Z, YANG X, YANG Y, TAN Y, HE Y, LIU M, LIU X, YUAN Q. Chem. Eur. J., 2018, 24(2):409-415.

    32. [32]

      IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25):22102-22112.

    33. [33]

      KIM M S, CHO S, JOO S H, LEE J, KWAK S K, KIM M I, LEE J. ACS Nano, 2019, 13(4):4312-4321.

    34. [34]

      GUO W, ZHANG M, LOU Z, ZHOU M, WANG P, WEI H. ChemCatChem, 2019, 11(2):737-743.

    35. [35]

      LIANG Q, XI J, GAO X J, ZHANG R, YANG Y, GAO X, YAN X, GAO L, FAN K. Nano Today, 2020, 35:100935.

    36. [36]

      ZHU Y, WU J, HAN L, WANG X, LI W, GUO H, WEI H. Anal. Chem., 2020, 92(11):7444-7452.

    37. [37]

      FENG L, ZHANG L, ZHANG S, CHEN X, LI P, GAO Y, XIE S, ZHANG A, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(15):17547-17556.

    38. [38]

      LI S, ZHAO X, GANG R, CAO B, WANG H. Anal. Chem., 2020, 92(7):5152-5157.

    39. [39]

      XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.

    40. [40]

      XI Z, GAO W, XIA X. ChemBioChem, 2020, 21(17):2440-2444.

    41. [41]

      HE W, ZHOU Y T, WAMER W G, HU X, WU X, ZHENG Z, BOUDREAU M D, YIN J J. Biomaterials, 2013, 34(3):765- 773.

    42. [42]

      FU Y, ZHAO X, ZHANG J, LI W. J. Phys. Chem. C, 2014, 118(31):18116-18125.

    43. [43]

      PENG F F, ZHANG Y, GU N. Chin. Chem. Lett., 2008, 19(6):730-733.

    44. [44]

      AHMED S R, TAKEMEURA K, LI T C, KITAMOTO N, TANAKA T, SUZUKI T, PARK E Y. Biosens. Bioelectron., 2017, 87:558-565.

    45. [45]

      LIU X, WU J, LIU Q, LIN A, LI S, ZHANG Y, WANG Q, LI T, AN X, ZHOU Z, YANG M, WEI H. J. Mater. Chem. B, 2021, 9(35):7238-7245.

    46. [46]

      NILSSON A, PETTERSSON L G M, HAMMER B, BLIGAARD T, CHRISTENSEN C H, NRSKOV J K. Catal. Lett., 2005, 100(3-4):111-114.

    47. [47]

      LIU S, LU F, XING R, ZHU J. Chem. Eur. J., 2011, 17(2):620-625.

    48. [48]

      WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J, GE C. Adv. Funct. Mater., 2018, 28(28), 1801484.

    49. [49]

      TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Science, 2007, 316(5825):732-735.

    50. [50]

      ZHAO Z J, LIU S, ZHA S, CHENG D, STUDT F, HENKELMAN G, GONG J. Nat. Rev. Mater., 2019, 4(12):792-804.

    51. [51]

      WANG Q, LI C, WANG X, PU J, ZHANG S, LIANG L, CHEN L, LIU R, ZUO W, ZHANG H, TAO Y, GAO X, WEI H. Nano Lett., 2022, 22(24):10003-10009.

    52. [52]

      BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. J. Catal., 2004, 224(1):206-217.

    53. [53]

      ZHUANG J, MIDGLEY A C, WEI Y, LIU Q, KONG D, HUANG X. Adv. Mater., 2023:e2210848.

    54. [54]

      LI T, WANG Y, LIU W, FEI H, GUO C, WEI H. Angew. Chem. Int. Ed., 2023, 62(12):e202212438.

    55. [55]

      WANG X, QIN L, LIN M, XING H, WEI H. Anal. Chem., 2019, 91(16):10648-10656.

    56. [56]

      LUO F, LIN Y, ZHENG L, LIN X, CHI Y. ACS Appl. Mater. Interfaces, 2015, 7(21):11322-11329.

    57. [57]

      HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.

    58. [58]

      CHENG H, ZHANG L, HE J, GUO W, ZHOU Z, ZHANG X, NIE S, WEI H. Anal. Chem., 2016, 88(10):5489-5497.

    59. [59]

      WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.

    60. [60]

      KARYAKIN A A, PUGANOVA E A, BUDASHOV I A, KUROCHKIN I N, KARYAKINA E E, LEVCHENKO V A, MATVEYENKO V N, VARFOLOMEYEV S D. Anal. Chem., 2004, 76(2):474-478.

    61. [61]

      KIM M I, YE Y, WON B Y, SHIN S, LEE J, PARK H G. Adv. Funct. Mater., 2011, 21(15):2868-2875.

    62. [62]

      ZHANG C, CHEN C, ZHAO D, KANG G, LIU F, YANG F, LU Y, SUN J. Anal. Chem., 2022, 94(8):3485-3493.

    63. [63]

      FENG J, HUANG P, SHI S, DENG K Y, WU F Y. Anal. Chim. Acta, 2017, 967:64-69.

    64. [64]

      LOU Z, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23):15267-15274.

    65. [65]

      NI P, DAI H, WANG Y, SUN Y, SHI Y, HU J, LI Z. Biosens. Bioelectron., 2014, 60:286-291.

    66. [66]

      CHEN W, ZHANG X, LI J, CHEN L, WANG N, YU S, LI G, XIONG L, JU H. Anal. Chem., 2020, 92(3):2714-2721.

    67. [67]

      ZHANG G Y, DENG S Y, CAI W R, COSNIER S, ZHANG X J, SHAN D. Anal. Chem., 2015, 87(17):9093-9100.

    68. [68]

      LING P, LEI J, ZHANG L, JU H. Anal. Chem., 2015, 87(7):3957-3963.

    69. [69]

      LI X, LI X, LI D, ZHAO M, WU H, SHEN B, LIU P, DING S. Biosens. Bioelectron., 2020, 168:112554.

    70. [70]

      TIAN L, QI J, ODERINDE O, YAO C, SONG W, WANG Y. Biosens. Bioelectron., 2018, 110:110-117.

    71. [71]

      BROTO M, KAMINSKI M M, ADRIANUS C, KIM N, GREENSMITH R, DISSANAYAKE-PERERA S, SCHUBERT A J, TAN X, KIM H, DIGHE A S, COLLINS J J, STEVENS M M. Nat. Nanotechnol., 2022, 17(10):1120-1126.

    72. [72]

      SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.

    73. [73]

      GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.

    74. [74]

      CHAU L Y, HE Q, QIN A, YIP S P, LEE T M H. J. Mater. Chem. B, 2016, 4(23):4076-4083.

    75. [75]

      DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X, KOBINGER G P, GAO G F, YAN X. Biosens. Bioelectron., 2015, 74:134-141.

    76. [76]

      LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2021, 173:112817.

    77. [77]

      JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.

    78. [78]

      TANG Y, WU Y, XU W, JIAO L, CHEN Y, SHA M, YE H R, GU W, ZHU C. Anal. Chem., 2022, 94(2):1022-1028.

    79. [79]

      WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.

    80. [80]

      HU L, LIAO H, FENG L, WANG M, FU W. Anal. Chem., 2018, 90(10):6247-6252.

    81. [81]

      CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.

    82. [82]

      WANG Y M, LIU J W, ADKINS G B, SHEN W, TRINH M P, DUAN L Y, JIANG J H, ZHONG W. Anal. Chem., 2017, 89(22):12327-12333.

    83. [83]

      BORIACHEK K, MASUD M K, PALMA C, PHAN H P, YAMAUCHI Y, HOSSAIN M S A, NGUYEN N T, SALOMON C, SHIDDIKY M J A. Anal. Chem., 2019, 91(6):3827-3834.

    84. [84]

      ZHANG L N, DENG H H, LIN F L, XU X W, WENG S H, LIU A L, LIN X H, XIA X H, CHEN W. Anal. Chem., 2014, 86(5):2711-2718.

    85. [85]

      LI J, WANG J, WANG Y, TRAU M. Analyst, 2017, 142(24):4788-4793.

    86. [86]

      LIN Y, LIU K, YU P, XIANG L, LI X, MAO L. Anal. Chem., 2007, 79(24):9577-9583.

    87. [87]

      SARDESAI N P, GANESANA M, KARIMI A, LEITER J C, ANDREESCU S. Anal. Chem., 2015, 87(5):2996-3003.

    88. [88]

      DING Y, REN G, WANG G, LU M, LIU J, LI K, LIN Y. Anal. Chem., 2020, 92(6):4583-4591.

    89. [89]

      LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, LIN Y, NAJER A, BEKDEMIR A, CHEN Q, BHATIA S N, STEVENS M M. Nat. Nanotechnol., 2019, 14(9):883-890.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    10. [10]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    20. [20]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

Metrics
  • PDF Downloads(45)
  • Abstract views(1656)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return