Citation: SHANG Chang-Shuai,  LI Jing,  WANG Er-Kang,  GUO Shao-Jun. Recent Progress in Noble Metal Based Nanozymes for Bio-detection Application[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 652-665. doi: 10.19756/j.issn.0253-3820.231044 shu

Recent Progress in Noble Metal Based Nanozymes for Bio-detection Application

  • Corresponding author: LI Jing,  GUO Shao-Jun, 
  • Received Date: 10 February 2023
    Revised Date: 30 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 52025133, 22105007), the National Key R&D Program of China (No. 2019YFA0709202), the Tencent Foundation through the XPLORER PRIZE, the Beijing Natural Science Foundation (No. JQ18005), the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP202004), the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 202055) and the China Postdoctoral Science Foundation (No. 2020M670018).

  • In comparison with natural enzymes, nanozymes show many advantages such as high stability, ease to mass production and tunable enzymatic properties and possess great potentials for application in detection and biosensing fields. Especially, noble metal based nanozymes usually exhibit superior catalytic activity and stability. The achievements in precisely synthesizing noble metal-based nanomaterials at atomic levels enable investigation of interaction mechanisms between structures and enzymatic performances. In this review, the development of noble metal based nanozymes were sumarized, including noble metal nanocrystals and noble metal based singleatom nanozymes. The preparation strategies, regulation methods of enzymatic properties and underlying mechanisms were mainly discussed. The applications for detection and biosensing were also elucidated. At last, the challenges and prospects of this area were briefly discussed.
  • 加载中
    1. [1]

      GARCIA-VILOCA M, GAO J, KARPLUS M, TRUHLAR D G. Science, 2004, 303(5655):186-195.

    2. [2]

      ZHAO H. ACS Catal., 2011, 1(9):1119-1120.

    3. [3]

      GAO L, YAN X. Sci. China Life Sci., 2016, 59(4):400-402.

    4. [4]

    5. [5]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    6. [6]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol, 2007, 2(9):577-583.

    7. [7]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    8. [8]

      LIN Y, REN J, QU X. Acc. Chem. Res., 2014, 47(4):1097-1105.

    9. [9]

      WANG X, HU Y, WEI H. Inorg. Chem. Front., 2016, 3(1):41-60.

    10. [10]

      WEI Z, XI Z, VLASOV S, AYALA J, XIA X. Chem. Commun., 2020, 56(95):14962-14975.

    11. [11]

      WU W, WANG Q, CHEN J, HUANG L, ZHANG H, RONG K, DONG S. Nanoscale, 2019, 11(26):12603-12609.

    12. [12]

      LUO M, ZHAO Z, ZHANG Y, SUN Y, XING Y, LV F, YANG Y, ZHANG X, HWANG S, QIN Y, MA J Y, LIN F, SU D, LU G, GUO S. Nature, 2019, 574(7776):81-85.

    13. [13]

      GUO S, WANG E. Nano Today, 2011, 6(3):240-264.

    14. [14]

      NIU W, DUAN Y, QING Z, HUANG H, LU X. J. Am. Chem. Soc., 2017, 139(16):5817-5826.

    15. [15]

      XIA Y, XIONG Y, LIM B, SKRABALAK S. Angew. Chem. Int. Ed., 2009, 48(1):60-103.

    16. [16]

      CHEN M, WU B, YANG J, ZHENG N. Adv. Mater., 2012, 24(7):862-879.

    17. [17]

      SHANG C, HONG W, GUO Y, WANG J, WANG E. Chem. Eur. J., 2017, 23(24):5799-5803.

    18. [18]

      QIAO B, WANG A, YANG X, ALLARD L F, JIANG Z, CUI Y, LIU J, LI J, ZHANG T. Nat. Chem., 2011, 3(8):634-641.

    19. [19]

      HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.

    20. [20]

      JIANG B, LIANG M. Chin. J. Chem., 2021, 39(1):174-180.

    21. [21]

      JI S, JIANG B, HAO H, CHEN Y, DONG J, MAO Y, ZHANG Z, GAO R, CHEN W, ZHANG R, LIANG Q, LI H, LIU S, WANG Y, ZHANG Q, GU L, DUAN D, LIANG M, WANG D, YAN X, LI Y. Nat. Catal., 2021, 4(5):407-417.

    22. [22]

      SHEN X, LIU W, GAO X, LU Z, WU X, GAO X. J. Am. Chem. Soc., 2015, 137(50):15882-15891.

    23. [23]

      FAN J, YIN J J, NING B, WU X, HU Y, FERRARI M, ANDERSON G J, WEI J, ZHAO Y, NIE G. Biomaterials, 2011, 32(6):1611-1618.

    24. [24]

      JV Y, LI B, CAO R. Chem. Commun., 2010, 46(42):8017-8019.

    25. [25]

      LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.

    26. [26]

      HE S, YANG L, BALASUBRAMANIAN P, LI S, PENG H, KUANG Y, DENG H, CHEN W. J. Mater. Chem. A, 2020, 8(47):25226-25234.

    27. [27]

      WANG Q, HONG G, LIU Y, HAO J, LIU S. RSC Adv., 2020, 10(42):25209-25213.

    28. [28]

      CAI S, XIAO W, DUAN H, LIANG X, WANG C, YANG R, LI Y. Nano Res., 2018, 11(12):6304-6315.

    29. [29]

      YE H, MOHAR J, WANG Q, CATALANO M, KIM M J, XIA X. Sci. Bull., 2016, 61(22):1739-1745.

    30. [30]

      FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.

    31. [31]

      BU L, ZHANG N, GUO S, ZHANG X, LI J, YAO J, WU T, LU G, MA J Y, SU D, HUANG X. Science, 2016, 354(6318):1410-1414.

    32. [32]

      XI Z, CHENG X, GAO Z, WANG M, CAI T, MUZZIO M, DAVIDSON E, CHEN O, JUNG Y, SUN S, XU Y, XIA X. Nano Lett., 2020, 20(1):272-277.

    33. [33]

      NORSKOV J K, BLIGAARD T, ROSSMEISL J, CHRISTENSEN C H. Nat. Chem., 2009, 1(1):37-46.

    34. [34]

      LIU C, YAN Y, ZHANG X, MAO Y, REN X, HU C, HE W, YIN J. Nanoscale, 2020, 12(5):3068-3075.

    35. [35]

      XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.

    36. [36]

      DUCHESNE P N, LI Z Y, DEMING C P, FUNG V, ZHAO X, YUAN J, REGIER T, ALDALBAHI A, ALMARHOON Z, CHEN S, JIANG D, ZHENG N, ZHANG P. Nat. Mater., 2018, 17(11):1033-1039.

    37. [37]

      YAN H, JIAO L, WANG H, ZHU Y, CHEN Y, SHUAI L, GU M, QIU M, GU W, ZHU C. Sens. Actuators, B, 2021, 343:130108.

    38. [38]

      YAN H, CHEN Y, JIAO L, GU W, ZHU C. Sens. Actuators, B, 2021, 341:130007.

    39. [39]

      WU Y, XU W, JIAO L, TANG Y, CHEN Y, GU W, ZHU C. Mater. Today, 2022, 52:327-347.

    40. [40]

      SHANG C, WANG Q, TAN H, LU S, WANG S, ZHANG Q, GU L, LI J, WANG E, GUO S. JACS Au, 2022, 2(11):2453- 2459.

    41. [41]

      PEI Y, ZHOU G, LUAN N, ZONG B, QIAO M, TAO F F. Chem. Soc. Rev., 2012, 41(24):8140-8162.

    42. [42]

      LAI J, HUANG B, TANG Y, LIN F, ZHOU P, CHEN X, SUN Y, LV F, GUO S. Chem, 2018, 4(5):1153-1166.

    43. [43]

      SUN X, GUO S, CHUNG C S, ZHU W, SUN S. Adv. Mater., 2013, 25(1):132-136.

    44. [44]

      XIONG Y, SHAN H, ZHOU Z, YAN Y, CHEN W, YANG Y, LIU Y, TIAN H, WU J, ZHANG H, YANG D. Small, 2017, 13(7):1603423.

    45. [45]

      PARK J, ZHANG L, CHOI S I, ROLING L T, LU N, HERRON J A, XIE S, WANG J, KIM M J, MAVRIKAKIS M, XIA Y. ACS Nano, 2015, 9(3):2635-2647.

    46. [46]

      XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.

    47. [47]

      CHEN Y, JIAO L, YAN H, XU W, WU Y, ZHENG L, GU W, ZHU C. Anal. Chem., 2021, 93(36):12353-12359.

    48. [48]

      POTT M, HAYASHI T, MORI T, MITTL P R E, GREEN A P, HILVERT D. J. Am. Chem. Soc., 2018, 140(4):1535- 1543.

    49. [49]

      SHANG C, GUO Y, WANG E. J. Mater. Chem. A, 2019, 7(6):2547-2552.

    50. [50]

      XIE S, LU N, XIE Z, WANG J, KIM M J, XIA Y. Angew. Chem. Int. Ed., 2012, 51(41):10266-10270.

    51. [51]

      XIA X, WANG Y, RUDITSKIY A, XIA Y. Adv. Mater., 2013, 25(44):6313-6333.

    52. [52]

      LU X, TUAN H Y, CHEN J, LI Z Y, KORGEL B A, XIA Y. J. Am. Chem. Soc., 2007, 129(6):1733-1742.

    53. [53]

      WANG Q, ZHANG L, SHANG C, ZHANG Z, DONG S. Chem. Commun., 2016, 52(31):5410-5413.

    54. [54]

      CAI K, LV Z, CHEN K, HUANG L, WANG J, SHAO F, WANG Y, HAN H. Chem. Commun., 2013, 49(54):6024-6026.

    55. [55]

      GE C, WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J. Adv. Funct. Mater., 2018, 28(28):1801484.

    56. [56]

      GUO S, ZHANG S, SUN X, SUN S. J. Am. Chem. Soc., 2011, 133(39):15354-15357.

    57. [57]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    58. [58]

      LI M, CHEN J, WU W, FANG Y, DONG S. J. Am. Chem. Soc., 2020, 142(36):15569-15574.

    59. [59]

      COMOTTI M, DELLA PINA C, MATARRESE R, ROSSI M. Angew. Chem. Int. Ed., 2004, 43(43):5812-5815.

    60. [60]

      BELTRAME P, COMOTTI M, PINA C D, ROSSI M. J. Catal., 2004, 228(2):282-287.

    61. [61]

      BELTRAME P, COMOTTI M, DELLA PINA C, ROSSI M. Appl. Catal., A, 2006, 297(1):1-7.

    62. [62]

      CHEN J, MA Q, LI M, CHAO D, HUANG L, WU W, FANG Y, DONG S. Nat. Commun., 2021, 12(1):3375.

    63. [63]

      ZHANG H, WATANABE T, OKUMURA M, HARUTA M, TOSHIMA N. Nat. Mater., 2012, 11(1):49-52.

    64. [64]

      CHEN J, MA Q, YU Z, LI M, DONG S. Angew. Chem. Int. Ed., 2022, 61(48):e202213930.

    65. [65]

      CAI T, FANG G, TIAN X, YIN J J, CHEN C, GE C. ACS Nano, 2019, 13(11):12694-12702.

    66. [66]

      GAO F, SHAO T, YU Y, XIONG Y, YANG L. Nat. Commun., 2021, 12(1):745.

    67. [67]

      LIU Y, QING Y, JING L, ZOU W, GUO R. Langmuir, 2021, 37(24):7364-7372.

    68. [68]

      LIN Y, REN J, QU X. Adv. Mater., 2014, 26(25):4200-4217.

    69. [69]

      LIU H, LI Y, SUN S, XIN Q, LIU S, MU X, YUAN X, CHEN K, WANG H, VARGA K, MI W, YANG J, ZHANG X D. Nat. Commun., 2021, 12(1):114.

    70. [70]

      ZHEN W, LIU Y, LIN L, BAI J, JIA X, TIAN H, JIANG X. Angew. Chem. Int. Ed., 2018, 57(32):10309-10313.

    71. [71]

      WU W, HUANG L, WANG E, DONG S. Chem. Sci., 2020, 11(36):9741-9756.

    72. [72]

      FAN Y, GAN X, ZHAO H, ZENG Z, YOU W, QUAN X. Chem. Eng. J., 2022, 427:131572.

    73. [73]

      CHEN Y, WANG P, HAO H, HONG J, LI H, JI S, LI A, GAO R, DONG J, HAN X, LIANG M, WANG D, LI Y. J. Am. Chem. Soc., 2021, 143(44):18643-18651.

    74. [74]

      YAN R, SUN S, YANG J, LONG W, WANG J, MU X, LI Q, HAO W, ZHANG S, LIU H, GAO Y, OUYANG L, CHEN J, LIU S, ZHANG X D, MING D. ACS Nano, 2019, 13(10):11552-11560.

    75. [75]

      WANG D, ZHANG B, DING H, LIU D, XIANG J, GAO X J, CHEN X, LI Z, YANG L, DUAN H, ZHENG J, LIU Z, JIANG B, LIU Y, XIE N, ZHANG H, YAN X, FAN K, NIE G. Nano Today, 2021, 40:101243.

    76. [76]

      ZHU D, CHEN H, HUANG C, LI G, WANG X, JIANG W, FAN K. Adv. Funct. Mater., 2022, 32(16):2110268.

    77. [77]

      WANG W, ZHU Y, ZHU X, ZHAO Y, XUE Z, XIONG C, WANG Z, QU Y, CHENG J, CHEN M, LIU M, ZHOU F, ZHANG H, JIANG Z, HU Y, ZHOU H, WANG H, LI Y, LIU Y, WU Y. ACS Appl. Mater. Interfaces, 2021, 13(38):45269-45278.

    78. [78]

      CHEN J, MA Q, ZHENG X, FANG Y, WANG J, DONG S. Nat. Commun., 2022, 13(1):2808.

    79. [79]

    80. [80]

      SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.

    81. [81]

      JIANG B, DUAN D, GAO L, ZHOU M, FAN K, TANG Y, XI J, BI Y, TONG Z, GAO G F, XIE N, TANG A, NIE G, LIANG M, YAN X. Nat. Protoc., 2018, 13(7):1506-1520.

    82. [82]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    83. [83]

      ARIGA K, JI Q, MORI T, NAITO M, YAMAUCHI Y, ABE H, HILL J P. Chem. Soc. Rev., 2013, 42(15):6322-6345.

    84. [84]

      MA C B, ZHANG Y, LIU Q, DU Y, WANG E. Anal. Chem., 2020, 92(7):5319-5328.

    85. [85]

      WANG Y, JIA G, CUI X, ZHAO X, ZHANG Q, GU L, ZHENG L, LI L H, WU Q, SINGH D J, MATSUMURA D, TSUJI T, CUI Y T, ZHAO J, ZHENG W. Chem, 2021, 7(2):436-449.

    86. [86]

      DENG L, CHEN C, ZHU C, DONG S, LU H. Biosens. Bioelectron., 2014, 52:324-329.

    87. [87]

      WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 56(50):16082-16085.

    88. [88]

      MCKEATING K S, SLOAN-DENNISON S, GRAHAM D, FAULDS K. Analyst, 2013, 138(21):6347-6353.

    89. [89]

      SONG W, NIE G, JI W, JIANG Y, LU X, ZHAO B, OZAKI Y. RSC Adv., 2016, 6(59):54456-54462.

    90. [90]

      WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.

    91. [91]

      LOGAN N, MCVEY C, ELLIOTT C, CAO C. Nano Res., 2020, 13(4):989-998.

    92. [92]

      GAO Z, LIU G G, YE H, RAUSCHENDORFER R, TANG D, XIA X. Anal. Chem., 2017, 89(6):3622-3629.

    93. [93]

      HE S B, CHEN F Q, XIU L F, PENG H P, DENG H H, LIU A L, CHEN W, HONG G L. Anal. Bioanal. Chem., 2020, 412(2):499-506.

    94. [94]

      HE W, LIU Y, YUAN J, YIN J J, WU X, HU X, ZHANG K, LIU J, CHEN C, JI Y, GUO Y. Biomaterials, 2011, 32(4):1139-1147.

    95. [95]

      LEUVERING J H W, THAL P J H M, WAART M, SCHUURS A H W M. J. Immunoassay, 1980, 1(1):77-91.

    96. [96]

      XU Y, LIU Y, WU Y, XIA X, LIAO Y, LI Q. Anal. Chem., 2014, 86(12):5611-5614.

    97. [97]

      GLYNOU K, IOANNOU P C, CHRISTOPOULOS T K, SYRIOPOULOU V. Anal. Chem., 2003, 75(16):4155-4160.

    98. [98]

      GRANT B D, ANDERSON C E, WILLIFORD J R, ALONZO L F, GLUKHOVA V A, BOYLE D S, WEIGL B H, NICHOLS K P. Anal. Chem., 2020, 92(16):11305-11309.

    99. [99]

      CHEN Z, ZHANG Z, ZHAI X, LI Y, LIN L, ZHAO H, BIAN L, LI P, YU L, WU Y, LIN G. Anal. Chem., 2020, 92(10):7226-7231.

    100. [100]

      WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(28)
  • Abstract views(2061)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return