Citation: TIAN Geng,  SUN Wen-Bo,  LU Le-Hui. Polydopamine-modified FeSe2 Nanoparticles for Magnetic Resonance Imaging-guided Photothermal Therapy of Tumors[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 833-841. doi: 10.19756/j.issn.0253-3820.221643 shu

Polydopamine-modified FeSe2 Nanoparticles for Magnetic Resonance Imaging-guided Photothermal Therapy of Tumors

  • Corresponding author: SUN Wen-Bo,  LU Le-Hui, 
  • Received Date: 29 December 2022
    Revised Date: 21 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22134006, 21721003, U2241287).

  • Designing and preparing multifunctional nanomaterial is a hot research topic in tumor diagnosis and treatment. In this study, polydopamine-modified iron diselenide (FeSe2) nanoparticles (FeSe2-PDA NPs) were constructed for magnetic resonance imaging (MRI) and photothermal therapy of tumors. The FeSe2-PDA NPs were prepared by modifying polydopamine on the surface of FeSe2 NPs prepared by liquid-phase synthesis, and their morphological, optical and magnetic properties were investigated. Based on the excellent biocompatibility, their MRI effect and MRI-guided photothermal treatment of tumors were investigated in mouse experiments in vivo. The results showed that the relaxivity (r2) of FeSe2-PDA NPs was 129.47 L/(mmol·s), which could significantly reduce the T2 signal of MRI. Meanwhile, the cell survival rate was about 10% after 808 nm laser irradiation due to the excellent absorption ability in the near-infrared region. In the in vivo experiments of tumor-bearing mice, the tumor disappeared without recurrence within 14 days after photothermal ablation. The results showed that the synthesized FeSe2-PDA NPs had great potential in MRI diagnosis of tumors and photothermal therapy.
  • 加载中
    1. [1]

      LIU G, GAO J, AI H, CHEN X. Small, 2013, 9(9-10):1533-1545.

    2. [2]

      SUN W, WANG Z, LIU J, JIANG C, CHEN W, YU B, WANG W, LU L. Sci. Bull., 2021, 66(7):676-684.

    3. [3]

      STUEBER D D, VILLANOVA J, APONTE I, XIAO Z, COLVIN V L. Pharmaceutics, 2021, 13(7):943.

    4. [4]

      MALHOTRA N, LEE J S, LIMAN R A D, RUALLO J M S, VILLAFLORES O B, GER T R, HSIAO C D. Molecules, 2020, 25(14):3159.

    5. [5]

      LIU W, YIN S, HU Y, DENG T, LI J. Anal. Chem., 2021, 93(42):14223-14230.

    6. [6]

      SOBHANI A, SALAVATI-NIASARI M. Adv. Colloid Interface Sci., 2021, 287:102321.

    7. [7]

      DENG X, LIU H, XU Y, CHAN L, XIE J, XIONG Z, TANG Z, YANG F, CHEN T. J. Nanobiotechnol., 2021, 19(1):201.

    8. [8]

      YANG R Q, WANG P Y, LOU K L, DANG Y Y, TIAN H N, LI Y, GAO Y Y, HUANG W H, ZHANG Y Q, LIU X L, ZHANG G J. Adv. Sci., 2022, 9(12):e2104728.

    9. [9]

      CHENG W, ZENG X, CHEN H, LI Z, ZENG W, MEI L, ZHAO Y. ACS Nano, 2019, 13(8):8537-8565.

    10. [10]

      GAO D, SHI Y P, NI J H, CHEN S J, WANG Y, ZHAO B, SONG M L, GUO X Q, REN X C, ZHANG X C, TIAN Z M, YANG Z. Small, 2022, 18(36):e2106000.

    11. [11]

      MENG X, ZHANG B, YI Y, CHENG H, WANG B, LIU Y, GONG T, YANG W, YAO Y, WANG H, BU W. Nano Lett., 2020, 20(4):2522-2529.

    12. [12]

      FU T, CHEN Y, HAO J, WANG X, LIU G, LI Y, LIU Z, CHENG L. Nanoscale, 2015, 7(48):20757-20768.

    13. [13]

      CHENG L, SHEN S, SHI S, YI Y, WANG X, SONG G, YANG K, LIU G, BARNHART T E, CAI W, LIU Z. Adv. Funct. Mater., 2016, 26(13):2185-2197.

    14. [14]

      LU W, LIAO Y, JIANG C, WANG R, SHAN X, CHEN Q, SUN G, LIU J. New J. Chem., 2019, 43(19):7371-7378.

    15. [15]

      TIAN Q, JIANG F, ZOU R, LIU Q, CHEN Z, ZHU M, YANG S, WANG J, WANG J, HU J. ACS Nano, 2011, 5(12):9761- 9771.

    16. [16]

      LIU Y, AI K, LIU J, DENG M, HE Y, LU L. Adv. Mater., 2013, 25(9):1353-1359.

    17. [17]

      NI D, BU W, EHLERDING E B, CAI W, SHI J. Chem. Soc. Rev., 2017, 46(23):7438-7468.

    18. [18]

      CHENG L, YANG K, LI Y, CHEN J, WANG C, SHAO M, LEE S T, LIU Z. Angew. Chem. Int. Ed., 2011, 50(32):7385- 7390.

  • 加载中
    1. [1]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    13. [13]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    14. [14]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    15. [15]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(8)
  • Abstract views(2143)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return