Citation: SONG Zhong-Qian,  LI Wei-Yan,  BAO Yu,  LIU Zhen-Bang,  SUN Zhong-Hui,  NIU Li. Research Progress of Wearable Self-Powered Electrochemical Sensors[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 769-776. doi: 10.19756/j.issn.0253-3820.221632 shu

Research Progress of Wearable Self-Powered Electrochemical Sensors

  • Corresponding author: LIU Zhen-Bang,  NIU Li, 
  • Received Date: 22 December 2022
    Revised Date: 13 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22104021, 22204028) and the Yong Talent Project of Guangzhou Association for Science and Technology.

  • As one of the important branches of wearable electronics, wearable chemical sensors can be used to detect and analyze the chemical components in human bodies and their surrounding environments in continuous and real-time manner, exhibiting great potential in health monitoring, medical diagnosis and environmental protection. However, it is still challenging to develop the matched wearable energy supply devices with high energy density and comfortability. To achieve the continuous and real-time electrochemical monitoring, wearable chemical sensors with self-powered characteristics is a possible strategy to solve the above limitations. Hence, this review first introduced the classification and working principle of wearable self-powered chemical sensors, and then summarized the current research and application progress of wearable self-powered chemical sensors. Finally, the challenge and the existing issues of self-powered wearable chemical sensors were discussed. The review provided a reference for the energy supply selection of wearable electronics and the development of new selfpowered sensors.
  • 加载中
    1. [1]

      BARIYA M, NYEIN H Y Y, JAVEY A. Nat. Electron., 2018, 1(3):160-171.

    2. [2]

    3. [3]

      SONG Y, MIN J, YU Y, WANG H, YANG Y, ZHANG H, GAO W. Sci. Adv., 2020, 6(40):eaay9842.

    4. [4]

      NGUYEN J T, CHENG W. Small Struct., 2022, 3(8):2200034.

    5. [5]

      LI W, SONG Z, KONG H, CHEN M, LIU S, BAO Y, MA Y, SUN Z, LIU Z, WANG W, NIU L. Nano Energy, 2022, 104:107935.

    6. [6]

      KANOKPAKA P, CHANG L Y, WANG B C, HUANG T H, SHIH M J, HUNG W S, LAI J Y, HO K C, YEH M H. Nano Energy, 2022, 100:107464.

    7. [7]

      LIU Z, ZHENG K, HU L, LIU J, QIU C, ZHOU H, HUANG H, YANG H, LI M, GU C, XIE S, QIAO L, SUN L. Adv. Mater., 2010, 22(9):999-1003.

    8. [8]

      XU S, QIN Y, XU C, WEI Y, YANG R, WANG Z L. Nat. Nanotechnol., 2010, 5(5):366-373.

    9. [9]

      VIJJAPU M T, SURYA S G, HE J H, SALAMA K N. ACS Appl. Mater. Interfaces, 2021, 13(34):40460-40470.

    10. [10]

      ZHAO Y, LIU L, ZHANG F, DI C, ZHU D. SmartMat, 2021, 2(4):426-445.

    11. [11]

      LI Z, CHEN J, GUO H, FAN X, WEN Z, YEH M H, YU C, CAO X, WANG Z L. Adv. Mater., 2016, 28(15):2983-2991.

    12. [12]

      MENG J, LI H, ZHAO L, LU J, PAN C, ZHANG Y, LI Z. Nano Lett., 2020, 20(7):4968-4974.

    13. [13]

      SU Y, YANG T, ZHAO X, CAI Z, CHEN G, YAO M, CHEN K, BICK M, WANG J, LI S, XIE G, TAI H, DU X, JIANG Y, CHEN J. Nano Energy, 2020, 74:104941.

    14. [14]

      HUANG C, CHEN G, NASHALIAN A, CHEN J. Nanoscale, 2021, 13(4):2065-2081.

    15. [15]

      CUI S, ZHENG Y, ZHANG T, WANG D, ZHOU F, LIU W. Nano Energy, 2018, 49:31-39.

    16. [16]

      LIU S N, YUAN G T, ZHANG Y, XIE L J, SHEN Q Q, LEI H, WEN Z, SUN X H. Adv. Mater. Technol., 2021, 6(12):2100310.

    17. [17]

      WANG D, ZHANG D, YANG Y, MI Q, ZHANG J, YU L. ACS Nano, 2021, 15(2):2911-2919.

    18. [18]

      PARRILLA M, DE WAEL K. Adv. Funct. Mater., 2021, 31(50):2107042.

    19. [19]

      ZHAO Y, LIU X L, MA S X, WANG W J, NING X J, ZHAO L, ZHUANG J. Sens. Actuators, B, 2021, 340:129985.

    20. [20]

      MATHUR A, FAN H, MAHESHWARI V. Mater. Adv., 2021, 2(16):5274-5299.

    21. [21]

      BAG S, DURSTOCK M F. Nano Energy, 2016, 30:542-548.

    22. [22]

      XIANG S, ZHANG N, FAN X. Adv. Fiber Mater., 2021, 3(2):76-106.

    23. [23]

      LIN H, WENG W, REN J, QIU L, ZHANG Z, CHEN P, CHEN X, DENG J, WANG Y, PENG H. Adv. Mater., 2014, 26(8):1217-1222.

    24. [24]

      WU S, LI Z, ZHANG J, WU X, DENG X, LIU Y, ZHOU J, ZHI C, YU X, CHOY W C H, ZHU Z, JEN A K Y. Adv. Mater., 2021, 33(51):2105539.

    25. [25]

      HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Energy Environ. Sci., 2020, 13(3):685-743.

    26. [26]

      ZHANG Q, DENG K, WILKENS L, REITH H, NIELSCH K. Nat. Electron., 2022, 5(6):333-347.

    27. [27]

      KIM J Y, LEE W, KANG Y H, CHO S Y, JANG K S. Carbon, 2018, 133:293-299.

    28. [28]

      ZHANG F, ZANG Y, HUANG D, DI C A, ZHU D. Nat. Commun., 2015, 6(1):8356.

    29. [29]

      ZHENG C, XIANG L, JIN W, SHEN H, ZHAO W, ZHANG F, DI C, ZHU D. Adv. Mater. Technol., 2019, 4(8):1900247.

    30. [30]

      TSAO Y H, HUSAIN R A, LIN Y J, KHAN I, CHEN S W, LIN Z H. Nano Energy, 2019, 62:268-274.

    31. [31]

      WU Z, ZHANG S, LIU Z, MU E, HU Z. Nano Energy, 2022, 91:106692.

    32. [32]

      HOSSEIN-BABAEI F, MASOUMI S, AGHILI S, SHOKRANI M. ACS Appl. Electron. Mater., 2021, 3(1):353-361.

    33. [33]

      JIA Y, JIANG Q, SUN H, LIU P, HU D, PEI Y, LIU W, CRISPIN X, FABIANO S, MA Y, CAO Y. Adv. Mater., 2021, 33(42):2102990.

    34. [34]

      YU Y, HU Z, LIEN S Y, YU Y, GAO P. ACS Appl. Mater. Interfaces, 2022, 14(42):47696-47705.

    35. [35]

      ZHU S, FAN Z, FENG B, SHI R, JIANG Z, PENG Y, GAO J, MIAO L, KOUMOTO K. Energies, 2022, 15(9):3375.

    36. [36]

      NOZARIASBMARZ A, SUAREZ F, DYCUS J H, CABRAL M J, LEBEAU J M, ÖZTÜRK M C, VASHAEE D. Nano Energy, 2020, 67:104265.

    37. [37]

      WANG Z L, SONG J. Science, 2006, 312(5771):242-246.

    38. [38]

      LV F, LIN J, ZHOU Z, HONG Z, WU Y, REN Z, ZHANG Q, DONG S, LUO J, SHI J, CHEN R, LIU B, SU Y, HUANG Y. Nano Energy, 2022, 100:107507.

    39. [39]

      THAKUR P, KOOL A, HOQUE N A, BAGCHI B, KHATUN F, BISWAS P, BRAHMA D, ROY S, BANERJEE S, DAS S. Nano Energy, 2018, 44:456-467.

    40. [40]

      KONG H, SONG Z, LI W, CHEN M, BAO Y, LIU Z, QU D, MA Y, WANG Z, HAN D, NIU L. Nano Energy, 2022, 100:107498.

    41. [41]

      SHIN S H, KIM Y H, LEE M H, JUNG J Y, NAH J. ACS Nano, 2014, 8(3):2766-2773.

    42. [42]

      CAO X, XIONG Y, SUN J, ZHU X, SUN Q, WANG Z L. Adv. Funct. Mater., 2021, 31(33):2102983.

    43. [43]

      YANG F, LI J, LONG Y, ZHANG Z, WANG L, SUI J, DONG Y, WANG Y, TAYLOR R, NI D, CAI W, WANG P, HACKER T, WANG X. Science, 2021, 373(6552):337-342.

    44. [44]

      SUI J, LI J, GU L, SCHMIDT C A, ZHANG Z, SHAO Y, GAZIT E, GILBERT P U P A, WANG X. J. Mater. Chem. B, 2022, 10(36):6958-6964.

    45. [45]

      ZHAO Z, DAI Y, DOU S X, LIANG J. Mater. Today Energy, 2021, 20:100690.

    46. [46]

      ZHOU Z, DU X, ZHANG Z, LUO J, NIU S, SHEN D, WANG Y, YANG H, ZHANG Q, DONG S. Nano Energy, 2021, 82:105709.

    47. [47]

      ZI Y, GUO H, WANG J, WEN Z, LI S, HU C, WANG Z L. Nano Energy, 2017, 31:302-310.

    48. [48]

      HE W, FU X, ZHANG D, ZHANG Q, ZHUO K, YUAN Z, MA R. Nano Energy, 2021, 84:105880.

    49. [49]

      FAN F R, TANG W, WANG Z L. Adv. Mater., 2016, 28(22):4283-4305.

    50. [50]

      CHEN C, WEN Z, WEI A, XIE X, ZHAI N, WEI X, PENG M, LIU Y, SUN X, YEOW J T W. Nano Energy, 2019, 62:442-448.

    51. [51]

      SU Y, WANG J, WANG B, YANG T, YANG B, XIE G, ZHOU Y, ZHANG S, TAI H, CAI Z, CHEN G, JIANG Y, CHEN L Q, CHEN J. ACS Nano, 2020, 14(5):6067-6075.

    52. [52]

      AARYASHREE, SAHOO S, WALKE P, NAYAK S K, ROUT C S, LATE D J. Nano Res., 2021, 14(11):3669-3689.

    53. [53]

      NUNEZ C G, MANJAKKAL L, DAHIYA R. NPJ Flex. Electron., 2019, 3(1):1.

    54. [54]

      SONG Z, LI W, KONG H, BAO Y, WANG N, WANG W, MA Y, HE Y, GAN S, NIU L. Nano Energy, 2022, 92:106759.

    55. [55]

      KHANDELWAL G, RAJ N P M J, KIM S J. Adv. Energy Mater., 2021, 11(33):2101170.

    56. [56]

      HE T, GUO X, LEE C. iScience, 2021, 24(1):101934.

    57. [57]

      CHEN J, WANG Z L. Joule, 2017, 1(3):480-521.

    58. [58]

      UDDIN A S M I, YAQOOB U, CHUNG G S. ACS Appl. Mater. Interfaces, 2016, 8(44):30079-30089.

    59. [59]

      CHANG J, MENG H, LI C, GAO J, CHEN S, HU Q, LI H, FENG L. Adv. Mater. Technol., 2020, 5(5):1901087.

    60. [60]

      WEN Z, CHEN J, YEH M H, GUO H, LI Z, FAN X, ZHANG T, ZHU L, WANG Z L. Nano Energy, 2015, 16:38-46.

    61. [61]

      LIN Y, DENG P, NIE Y, HU Y, XING L, ZHANG Y, XUE X. Nanoscale, 2014, 6(9):4604-4610.

    62. [62]

      ZHU D, FU Y, ZANG W, ZHAO Y, XING L, XUE X. Mater. Lett., 2016, 166:288-291.

    63. [63]

      ZHAO Y, LAI X, DENG P, NIE Y, ZHANG Y, XING L, XUE X. Nanotechnology, 2014, 25(11):115502.

    64. [64]

      FU Y, NIE Y, ZHAO Y, WANG P, XING L, ZHANG Y, XUE X. ACS Appl. Mater. Interfaces, 2015, 7(19):10482-10490.

    65. [65]

      LEE J W, JUNG S, LEE T W, JO J, CHAE H Y, CHOI K, KIM J J, LEE J H, YANG C, BAIK J M. Adv. Energy Mater., 2019, 9(36):1901987.

    66. [66]

      CHEN H, ZHANG M, BO R, BARUGKIN C, ZHENG J, MA Q, HUANG S, HO-BAILLIE A W Y, CATCHPOLE K R, TRICOLI A. Small, 2018, 14(7):1702571.

    67. [67]

      KAKAVELAKIS G, GAGAOUDAKIS E, PETRIDIS K, PETROMICHELAKI V, BINAS V, KIRIAKIDIS G, KYMAKIS E. ACS Sens., 2018, 3(1):135-142.

    68. [68]

      ZANG W, NIE Y, ZHU D, DENG P, XING L, XUE X. J. Phys. Chem. C, 2014, 118(17):9209-9216.

    69. [69]

      KANG K, PARKR I, NA K, LEE J Y. Proceedings IMCS, 2018, 2018:466-467.

    70. [70]

      LIN Z H, ZHU G, ZHOU Y S, YANG Y, BAI P, CHEN J, WANG Z L. Angew. Chem. Int. Ed., 2013, 52(19):5065-5069.

    71. [71]

      WU Y, SU Y, BAI J, ZHU G, ZHANG X, LI Z, XIANG Y, SHI J. J. Nanomater., 2016, 2016:5121572.

    72. [72]

      WANG J, WU Z, PAN L, GAO R, ZHANG B, YANG L, GUO H, LIAO R, WANG Z L. ACS Nano, 2019, 13(2):2587-2598.

    73. [73]

      SELVARAJAN S, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2016, 234:395-403.

    74. [74]

      ABISEGAPRIYAN K S, RAJ N P M J, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2020, 320:128417.

  • 加载中
    1. [1]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    20. [20]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(10)
  • Abstract views(1746)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return