Citation: ZHANG Ming-Rui,  HAN Xiao-Jun. Construction of Phospholipid Analogue Vesicle and Study of Its Artificial Cell Functions[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 884-891. doi: 10.19756/j.issn.0253-3820.221630 shu

Construction of Phospholipid Analogue Vesicle and Study of Its Artificial Cell Functions

  • Corresponding author: HAN Xiao-Jun, hanxiaojun@hit.edu.cn
  • Received Date: 21 December 2022
    Revised Date: 15 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21929401, 22174031, 22111540252), the Natural Science Foundation of Heilongjiang Province (No. ZD2022B001) and the Heilongjiang Touyan Team Project (No. HITTY- 20190034).

  • Phospholipids, as natural components of cell membrane systems, are widely used to construct artificial cells. However, the synthesis and purification of natural phospholipids are complicated. Chemically synthesized phospholipid analogues are structurally similar to natural phospholipids, so they can be used to mimic phospholipids to construct artificial cells. In this work, a novel phospholipid analogue 2 was synthesized by the azide-alkyne click reaction, which could form vesicles. The membrane was fluid, which indicated the vesicles could mimic cell membranes. The vesicles were capable to encapsulate small molecule of calcein and macromolecule of rhodamine B isothiocyanate-dextran. Melittins were embedded in the membrane to form pores, which allowed the transmembrane transport of calcein. When the concentrations of melittin were 1.0, 2.0, 3.0, 4.0 and 5.0 μg/mL, the transmembrane diffusion coefficients of calcein were 0.33, 0.46, 0.70, 1.37 and 1.91 μm2/s, respectively. Glucose oxidase and horse radish peroxidase were encapsulated into vesicles to fabricate artificial cells, which mimicked the cell metabolism function. Amplex red was converted into resorufin via enzyme cascade reactions. The synthesized phospholipid analogues could provide new building blocks for artificial cells.
  • 加载中
    1. [1]

      WANG H, ZHU X, TSARKOVA L, PICH A, MÖLLER M. ACS Nano, 2011, 5(5):3937-3942.

    2. [2]

      LI M, HARBRON R L, WEAVER J V M, BINKS B P, MANN S. Nat. Chem., 2013, 5(6):529-536.

    3. [3]

      LI M, HUANG X, MANN S. Small, 2014, 10(16):3291-3298.

    4. [4]

      MORIGAKI K, WALDE P. Curr. Opin. Colloid Interface Sci., 2007, 12(2):75-80.

    5. [5]

      MANSY S S, SZOSTAK J W. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(36):13351-13355.

    6. [6]

      HANCZYC M M, FUJIKAWA S M, SZOSTAK J W. Science, 2003, 302(5645):618-622.

    7. [7]

      DISCHER D E, AHMED F. Annu. Rev. Biomed. Eng., 2006, 8(1):323-341.

    8. [8]

      MAI Y, EISENBERG A. Chem. Soc. Rev., 2012, 41(18):5969-5985.

    9. [9]

      DISCHER B M, WON Y Y, EGE D S, LEE J C M, BATES F S, DISCHER D E, HAMMER D A. Science, 1999, 284(5417):1143-1146.

    10. [10]

      GHELLAB S E, LI Q C, FUHS T, BI H M, HAN X J. Colloids Surf., B, 2017, 160:697-703.

    11. [11]

      LI Q C, WANG X J, MA S H, ZHANG Y, HAN X J. Colloids Surf., B, 2016, 147:368-375.

    12. [12]

      ZHU C, LI Q, DONG M, HAN X. Anal. Chem., 2018, 90(24):14363-14367.

    13. [13]

      LI C, LI Q, WANG Z, HAN X. Anal. Chem., 2020, 92(8):6060-6064.

    14. [14]

      WANG X, DU H, WANG Z, MU W, HAN X J. Adv. Mater., 2021, 33(6):e2002635.

    15. [15]

      ZHANG Y M, ROCK C O. Nat. Rev. Microbiol., 2008, 6(3):222-233.

    16. [16]

      YAO J, ROCK C O. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2013, 1831(3):495-502.

    17. [17]

      BREA R J, COLE C M, DEVARAJ N K. Angew. Chem. Int. Ed., 2014, 53(51):14102-14105.

    18. [18]

      BUDIN I, DEVARAJ N K. J. Am. Chem. Soc., 2012, 134(2):751-753.

    19. [19]

      BHATTACHARYA A, BREA R J, NIEDERHOLTMEYER H, DEVARAJ N K. Nat. Commun., 2019, 10(1):300.

    20. [20]

      PODOLSKY K A, DEVARAJ N K. Nat. Rev. Chem., 2021, 5(10):676-694.

    21. [21]

      KONETSKI D, BARANEK A, MAVILA S, ZHANG X, BOWMAN C N. Soft Matter, 2018, 14(37):7645-7652.

    22. [22]

      TAKAKURA K, TOYOTA T, SUGAWARA T. J. Am. Chem. Soc., 2003, 125(27):8134-8140.

    23. [23]

      MATSUO M, HIRATA Y, KURIHARA K, TOYOTA T, MIURA T, SUZUKI K, SUGAWARA T. Micromachines, 2020, 11(6):606.

    24. [24]

      BREA R J, COLE C M, LYDA B R, YE L, PROSSER R S, SUNAHARA R K, DEVARAJ N K. J. Am. Chem. Soc., 2017, 139(10):3607-3610.

    25. [25]

      AHOU A, MARTIGNAGO D, ALABDALLAH O, TAVAZZA R, STANO P, MACONE A, PIVATO M, MASI A, RAMBLA J L, VERA-SIRERA F, ANGELINI R, FEDERICO R, TAVLADORAKI P. J. Exp. Bot., 2014, 65(6):1585-1603.

    26. [26]

      ZHANG Y, CHEN Y, YANG X, HE X, LI M, LIU S, WANG K, LIU J, MANN S. J. Am. Chem. Soc., 2021, 143(7):2866- 2874.

    27. [27]

      ELBAUM-GARFINKLE S, KIM Y, SZCZEPANIAK K, CHEN C C H, ECKMANN C R, MYONG S, BRANGWYNNE C P. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23):7189-7194.

    28. [28]

      DENG N N, YELLESWARAPU M, HUCK W T S. J. Am. Chem. Soc., 2016, 138(24):7584-7591.

    29. [29]

      SONG L, HOBAUGH M R, SHUSTAK C, CHELEY S, BAYLEY H, GOUAUX J E. Science, 1996, 274(5294):1859-1865.

    30. [30]

      NOIREAUX V, LIBCHABER A. Proc. Natl. Acad. Sci. U. S. A., 2015, 101(51):17669-17674.

    31. [31]

      LI Q, HAN X. iScience, 2018, 8:138-147.

    32. [32]

      LI S, WANG X, MU W, HAN X. Anal. Chem., 2019, 91(10):6859-6864.

    33. [33]

      WANG X, TIAN L, DU H, LI M, MU W, DRINKWATER B W, HAN X, MANN S. Chem. Sci., 2019, 10(41):9446-9453.

    34. [34]

      YANG B, LI S, MU W, WANG Z, HAN X. Small, 2022:e2201305.

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    3. [3]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    7. [7]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    14. [14]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    15. [15]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    16. [16]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(8)
  • Abstract views(2551)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return