Citation:
MA Xiao, ZHAO Dan, WU Pei-Cheng, LIN Ji-Hong, WANG Fang, XU Yan-Jie, HE Long-Long, LIU Xin-Yu, SUN Jian. Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(6): 922-933.
doi:
10.19756/j.issn.0253-3820.221625
-
Nanozymes, as a class of nanomaterials with enzyme-like activity, exhibit good development and application potential in the fields of analytical chemistry and disease diagnosis and treatment. Metal-organic frameworks (MOFs) materials are porous crystalline materials formed by metal nodes and organic ligands, and their structures have certain similarities with natural enzymes. At present, researchers have developed a variety of nanozymes based on MOFs, including nanozymes with peroxidase-like, oxidase-like, superoxide dismutase-like, and hydrolase-like activities, showing broad application prospects. In this paper, according to the structural characteristics of the materials, MOFs-based nanozymes were divided into four categories, including original MOFs, chemically modified MOFs, MOFs composite materials and MOFs derivatives, and the basic principles and latest developments in the preparation of these nanozymes were introduced. Based on analytical strategies such as colorimetric sensing, fluorescent sensing and electrochemical sensing, the application progress of MOFs-based nanozymes in bioanalysis was reviewed. The challenges of their practical applications and future development trends were also discussed.
-
-
-
[1]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[2]
WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.
-
[3]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[4]
COLONNA S, GAGGERO N, RICHELMI C, PASTA P. Trends Biotechnol., 1999, 17(4):163-168.
-
[5]
LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.
-
[6]
AI L, LI L, ZHANG C, FU J, JIANG J. Chem. Eur. J., 2013, 19(45):15105-15108.
-
[7]
ZHANG J W, ZHANG H T, DU Z Y, WANG X, YU S H, JIANG H L. Chem. Commun., 2014, 50(9):1092-1094.
-
[8]
CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.
-
[9]
WANG Y, XUE Y, ZHAO Q, WANG S, SUN J, YANG X. Anal. Chem., 2022, 94(47):16345-16352.
-
[10]
WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.
-
[11]
CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.
-
[12]
DALAPATI R, SAKTHIVEL B, GHOSALYA M K, DHAKSHINAMOORTHY A, BISWAS S. CrystEngComm, 2017, 19(39):5915-5925.
-
[13]
LIU Y, ZHOU M, CAO W, WANG X, WANG Q, LI S, WEI H. Anal. Chem., 2019, 91(13):8170-8175.
-
[14]
ZHANG L, ZHANG Y, WANG Z, CAO F, SANG Y, DONG K, PU F, REN J, QU X. Mater. Horiz., 2019, 6(8):1682-1687.
-
[15]
MONDLOCH J E, KATZ M J, ISLEY III W C, GHOSH P, LIAO P, BURY W, WAGNER G W, HALL M G, DECOSTE J B, PETERSON G W, SNURR R Q, CRAMER C J, HUPP J T, FARHA O K. Nat. Mater., 2015, 14(5):512-516.
-
[16]
LIU X, QI W, WANG Y F, SU R X, HE Z M. Eur. J. Inorg. Chem., 2018, 2018(41):4579-4585.
-
[17]
NIU X, LI X, LYU Z, PAN J, DING S, RUAN X, ZHU W, DU D, LIN Y. Chem. Commun., 2020, 56(77):11338-11353.
-
[18]
VALEKAR A H, BATULE B S, KIM M I, CHO K H, HONG D Y, LEE U H, CHANG J S, PARK H G, HWANG Y K. Biosens. Bioelectron., 2018, 100:161-168.
-
[19]
HU S S, YAN J J, HUANG X M, GUO L H, LIN Z Y, LUO F, QIU B, WONNG K Y, CHEN G N. Sens. Actuators, B, 2018, 267:312-319.
-
[20]
LIU T, TIAN J, CUI L, LIU Q, WU L, ZHANG X. Colloids Surf. B, 2019, 178:137-145.
-
[21]
LIU Y, ZHANG L, LI Q, DAI H, XIANG T, YANG G, LI L. Anal. Chim. Acta, 2021, 1146:24-32.
-
[22]
SONG C, DING W, LIU H, ZHAO W, YAO Y, YAO C. New J. Chem., 2019, 43(32):12776-12784.
-
[23]
LIU Q, ZHANG A, WANG R, ZHANG Q, CUI D. Nano-Micro Lett., 2021, 13(1):154.
-
[24]
CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.
-
[25]
LI Y, HE X, YIN J J, MA Y, ZHANG P, LI J, DING Y, ZHANG J, ZHAO Y, CHAI Z, ZHANG Z. Angew. Chem. Int. Ed., 2015, 127(6):1852-1855.
-
[26]
TAN B, ZHAO H, WU W, LIU X, ZHANG Y, QUAN X. Nanoscale, 2017, 9(47):18699-18710.
-
[27]
XU J, PENG J, WANG X, HOU X. ACS Sustain. Chem. Eng., 2022, 10(29):9315-9324.
-
[28]
DÍAZ A, LOEWEN P C, FITA I, CARPENA X. Arch. Biochem. Biophys., 2012, 525(2):102-110.
-
[29]
YIN Y, GAO C, XIAO Q, LIN G, LIN Z, CAI Z, YANG H. ACS Appl. Mater. Interfaces, 2016, 8(42):29052-29061.
-
[30]
LI D, WU S, WANG F, JIA S, LIU Y, HAN X, ZHANG L, ZHANG S, WU Y. Mater. Lett., 2016, 178:48-51.
-
[31]
ZHANG L Y, FAN C, LIU M, LIU F J, BIAN S S, DU S Y, ZHU S Y, WANG H. Sens. Actuators, B, 2018, 266:543-552.
-
[32]
WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 129(50):16298-16301.
-
[33]
ZHONG X, XIA H, HUANG W, LI Z, JIANG Y. Chem. Eng. J., 2020, 381:122758.
-
[34]
TAN H, MA C, GAO L, LI Q, SONG Y, XU F, WANG T, WANG L. Chem. Eur. J., 2014, 20(49):16377-16383.
-
[35]
SONG Y, CHO D, VENKATESWARLU S, YOON M. RSC Adv., 2017, 7(17):10592-10600.
-
[36]
DONG W F, ZHUANG Y X, LI S Q, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 255:2050-2057.
-
[37]
ZHAO J, DONG W F, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 263:575-584.
-
[38]
TANG M L, LI J Q, CAI X D, SUN T D, CHEN C X. Chem. Asian J., 2022, 17(7):e202101422.
-
[39]
HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.
-
[40]
ZHAO C, XIONG C, LIU X, QIAO M, LI Z, YUAN T, WANG J, QU Y, WANG X Q, ZHOU F, XU Q, WANG S, CHEN M, WANG W, LI Y, YAO T, WU Y, LI Y. Chem. Commun., 2019, 55(16):2285-2288.
-
[41]
LIANG L, HUANG Y, LIU W, ZUO W, YE F, ZHAO S. Front. Chem., 2020, 8:671.
-
[42]
ZHENG H Q, LIU C Y, ZENG X Y, CHEN J, LÜ J, LIN R G, CAO R, LIN Z J, SU J W. Inorg. Chem., 2018, 57(15):9096- 9104.
-
[43]
WANG Y, ZHU Y, BINYAM A, LIU M, WU Y, LI F. Biosens. Bioelectron., 2016, 86:432-438.
-
[44]
LI H, LIU H, ZHANG J, CHENG Y, ZHANG C, FEI X, XIAN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40716-40725.
-
[45]
CUI F, DENG Q, SUN L. RSC Adv., 2015, 5(119):98215-98221.
-
[46]
WU T, MA Z, LI P, LIU M, LIU X, LI H, ZHANG Y, YAO S. Talanta, 2019, 202:354-361.
-
[47]
-
[48]
ZHAO C, JIANG Z, MU R, LI Y. Talanta, 2016, 159:365-370.
-
[49]
LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.
-
[50]
HU S, ZHU L, LAM C W, GUO L, LIN Z, QIU B, WONG K Y, CHEN G, LIU Z. Microchim. Acta, 2019, 186(3):190.
-
[51]
LI Y, YU C, YANG B, LIU Z, XIA P, WANG Q. Biosens. Bioelectron., 2018, 102:307-315.
-
[52]
LU J, HU Y H, WANG P X, LIU P Q, CHEN Z G, SUN D P. Sens. Actuators, B, 2020, 311:127909.
-
[53]
ARIF D, HUSSAIN Z, SOHAIL M, LIAQAT M A, KHAN M A, NOOR T. Front. Chem., 2020, 8:573510.
-
[54]
WANG Z, ZHANG Y C, WANG X Z, HAN L. Biosens. Bioelectron., 2022, 206:114120.
-
[1]
-
-
-
[1]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[2]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[3]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[4]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[5]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[6]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[7]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[8]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[9]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[10]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[11]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[12]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[13]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[14]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[15]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[18]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[19]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[20]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[1]
Metrics
- PDF Downloads(46)
- Abstract views(3186)
- HTML views(253)