Citation: ZHANG Yu,  SONG Zhi-Min,  DU Yan. Recent Progress of Nanozyme-Based Sensors in Point-of-Care Testing[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 800-810. doi: 10.19756/j.issn.0253-3820.221610 shu

Recent Progress of Nanozyme-Based Sensors in Point-of-Care Testing

  • Corresponding author: DU Yan, duyan@ciac.ac.cn
  • Received Date: 10 December 2022
    Revised Date: 17 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22174137), the Key Research and Development Project of Jilin Scientific and Technological Development Program (Nos. 202102041266YY, 20230204113YY) and the Changchun Municipal Science and Technology Bureau Special Project on Scientific and Technological Innovation Cooperation (No. 22SH13).

  • Point-of-care testing (POCT) is rapid, portable and accurate, which can break the limitations of space, large and expensive instruments, professional technicians, and long-time consumption. In recent years, a large number of methods, especially those involving signal conversion strategies, have been developed to construct sensitive and rapid sensors based on commercial POCT devices. These sensors are widely used in disease diagnosis, health management, environmental monitoring, and emergency response analysis. With the advantages of high stability, low cost, simple preparation and diverse enzyme-mimicking activities, nanozyme can flexibly engage in the construction of sensors toward different targets, where commercial POCT devices are used as readouts. This review highlighted the recent progress of nanozyme-based sensors in POCT, and sum up several readout signal types including color, pressure, temperature, pH, glucose and electrochemistry. Finally, the limitations of nanozyme-based sensors were discussed and the direction in the future development is prospected.
  • 加载中
    1. [1]

      ZHANG Y, ZHOU N. Electroanalysis, 2022, 34(2):168-183.

    2. [2]

      DAS B, FRANCO J L, LOGAN N, BALASUBRAMANIAN P, KIM M I, CAO C. Nano-Micro Lett., 2021, 13(1):193.

    3. [3]

      WEI M, RAO H, NIU Z, XUE X, LUO M, ZHANG X, HUANG H, XUE Z, LU X. Coord. Chem. Rev., 2021, 447:214149.

    4. [4]

      ZHANG J, LAN T, LU Y. TrAC, Trend Anal. Chem., 2020, 124:115782.

    5. [5]

      QIAN S, CUI Y, CAI Z, LI L. Biosens. Bioelectron. X, 2022, 11:100173.

    6. [6]

    7. [7]

      XIANG Y, LU Y. Nat. Chem., 2011, 3(9):697-703.

    8. [8]

      TANG D, LIN Y, ZHOU Q, LIN Y, LI P, NIESSNER R, KNOPP D. Anal. Chem., 2014, 86(22):11451-11458.

    9. [9]

      YU J, LI F, ZHOU M. Electroanalysis, 2022, 34(2):131.

    10. [10]

      LIU J, GENG Z, FAN Z, LIU J, CHEN H. Biosens. Bioelectron., 2019, 132:17-37.

    11. [11]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    12. [12]

      HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.

    13. [13]

      CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.

    14. [14]

      HOU C, WANG Y, DING Q, JIANG L, LI M, ZHU W, PAN D, ZHU H, LIU M. Nanoscale, 2015, 7(44):18770-18779.

    15. [15]

      SUN H, ZHAO A, GAO N, LI K, REN J, QU X. Angew. Chem. Int. Ed., 2015, 54(24):7176-7180.

    16. [16]

      LIAN M, LIU M, ZHANG X, ZHANG W, ZHAO J, ZHOU X, CHEN D. ACS Appl. Mater. Interfaces, 2021, 13(45):53599- 53609.

    17. [17]

      ZHOU C, ZENG Y, SONG Z, LIU Q, ZHANG Y, WANG M, DU Y. Anal. Chem., 2022, 94(38):13261-13268.

    18. [18]

      ALI M, KHALID M A U, SHAH I, KIM S W, KIM Y S, LIM J H, CHOI K H. New J. Chem., 2019, 43(20):7636-7645.

    19. [19]

      JIN R, XING Z, KONG D, YAN X, LIU F, GAO Y, SUN P, LIANG X, LU G. J. Mater. Chem. B, 2019, 7(8):1230-1237.

    20. [20]

      ZHAO L, WANG J, SU D, ZHANG Y, LU H, YAN X, BAI J, GAO Y, LU G. Nanoscale, 2020, 12(37):19420-19428.

    21. [21]

      SU M, CHEN H, ZHANG H, WANG Z. Microchim. Acta, 2022, 189(2):81.

    22. [22]

      JING W, CUI X, KONG F, WEI W, LI Y, FAN L, LI X. Analyst, 2021, 146(1):207-212.

    23. [23]

      CHENG N, ZHU C, WANG Y, DU D, ZHU M J, LUO Y, XU W, LIN Y. J. Anal. Test., 2018, 3(1):99-106.

    24. [24]

      SHI Y, LIU Z, LIU R, WU R, ZHANG J. Chem. Eng. J., 2022, 442:136072.

    25. [25]

      ZHANG J, LI Y, GONG X, WANG Y, FU W. Colloids Surf., B, 2022, 218:112711.

    26. [26]

      ZHAO Y, YANG M, FU Q, OUYANG H, WEN W, SONG Y, ZHU C, LIN Y, DU D. Anal. Chem., 2018, 90(12):7391- 7398.

    27. [27]

      LI J, LIU T, DAHLGREN R A, YE H, WANG Q, DING Y, GAO M, WANG X, WANG H. Anal. Chim. Acta, 2022, 1204:339703.

    28. [28]

      WANG T T, LIO C, HUANG H, WANG R Y, ZHOU H, LUO P, QING L S. Talanta, 2020, 206:120211.

    29. [29]

      YUAN X, ZHAO H, YUAN Y, CHEN M, ZHAO L, XIONG Z. Microchim. Acta, 2022, 189(8):283.

    30. [30]

      SHEN Y, WEI Y, LIU Z, NIE C, YE Y. Microchim. Acta, 2022, 189(6):233.

    31. [31]

      ZHANG P, XIA W, DENG P, MIN Y, TAN J, WANG Y, FU W. Colloids Surf., B, 2021, 206:111953.

    32. [32]

      KONG D, JIN R, ZHAO X, LI H, YAN X, LIU F, SUN P, GAO Y, LIANG X, LIN Y, LU G. ACS Appl. Mater. Interfaces, 2019, 11(12):11857-11864.

    33. [33]

      CHENG N, SONG Y, ZEINHOM M M A, CHANG Y C, SHENG L, LI H, DU D, LI L, ZHU M J, LUO Y, XU W, LIN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40671-40680.

    34. [34]

      LIU X, WANG F, MENG Y, ZHAO L, SHI W, WANG X, HE Z, CHAO J, LI C. Biosens. Bioelectron., 2022, 207:114208.

    35. [35]

      LIU B, WU Z, LIANG C, LU J, LI J, ZHANG L, LI T, ZHAO W, FU Y, HOU S, TANG X, LI C. Front. Microbiol., 2021, 12:692831.

    36. [36]

      HSU Y P, LI N S, CHEN Y T, PANG H H, WEI K C, YANG H W. Biosens. Bioelectron., 2020, 151:111960.

    37. [37]

      LI N S, CHEN Y T, HSU Y P, PANG H H, HUANG C Y, SHIUE Y L, WEI K C, YANG H W. Biosens. Bioelectron., 2020, 164:112309.

    38. [38]

      LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2020, 173:112817.

    39. [39]

      KONG D Y, HEO N S, KANG J W, LEE J B, KIM H J, KIM M I. Anal. Bioanal. Chem., 2022, 414(10):3257-3265.

    40. [40]

      ALIZADEH N, SALIMI A, HALLAJ R. Sens. Actuators, B, 2019, 288:44-52.

    41. [41]

      CHENG D, QIN J, FENG Y, WEI J. Biosensors, 2021, 11(8):258.

    42. [42]

      ZHOU Q, YANG H, CHEN X, XU Y, HAN D, ZHOU S, LIU S, SHEN Y, ZHANG Y. Angew. Chem. Int. Ed., 2022, 61(2):e202112453.

    43. [43]

      MUJTABA J, LIU J, DEY K K, LI T, CHAKRABORTY R, XU K, MAKAROV D, BARMIN R A, GORIN D A, TOLSTOY V P, HUANG G, SOLOVEV A A, MEI Y. Adv. Mater., 2021, 33(22):e2007465.

    44. [44]

      LIU X, MEI X, YANG J, LI Y. ACS Appl. Mater. Interfaces, 2022, 14(5):6985-6993.

    45. [45]

      FU Q, WU Z, DU D, ZHU C, LIN Y, TANG Y. ACS Sens., 2017, 2(6):789-795.

    46. [46]

      LIU D, LIU F, HUANG Y, SONG Y, ZHU Z, ZHOU S, YANG C. Analyst, 2019, 144(14):4188-4193.

    47. [47]

      ZHAO Y, BU S, WANG C, MA C, LI Z, ZHANG W, WAN J. Anal. Lett., 2020, 54(10):1603-1615.

    48. [48]

      LI L, DENG H, ZHAO Z, LIU Z. Analyst, 2021, 146(19):5898-5903.

    49. [49]

      SHI L, TANG Q, YANG B, LIU W, LI B, YANG C, JIN Y. Anal. Chem., 2022, 94(41):14453-14459.

    50. [50]

      ZHANG Y, LIU Q, MA C B, WANG Q, YANG M, DU Y. Theranostics, 2020, 10(11):5064-5073.

    51. [51]

      YU Z, CAI G, LIU X, TANG D. ACS Appl. Mater. Interfaces, 2020, 12(36):40133-40140.

    52. [52]

      YU Z, TANG Y, CAI G, REN R, TANG D. Anal. Chem., 2019, 91(2):1222-1226.

    53. [53]

      ZHU L, LV Z, YIN Z, LI M, TANG D. Sens. Actuators, B, 2021, 343:130121.

    54. [54]

      YU Z, CAI G, TONG P, TANG D. ACS Sens., 2019, 4(9):2272-2276.

    55. [55]

      HUANG L, YU Z, CHEN J, TANG D. ACS Appl. Bio Mater., 2020, 3(12):9156-9163.

    56. [56]

      MA X, WANG Z, HU X, CHEN J, ZHANG H, LI X, XIE F, XU J. J. Hazard. Mater., 2021, 415:125689.

    57. [57]

      FU G, SANJAY S T, ZHOU W, BREKKEN R A, KIRKEN R A, LI X J. Anal. Chem., 2018, 90(9):5930-5937.

    58. [58]

      WEI K, RAO H, XUE X, LUO M, XUE Z. Microchem. J., 2021, 170:106736.

    59. [59]

      AN P, RAO H, GAO M, XUE X, LIU X, LU X, XUE Z. Chem. Commun., 2020, 56(68):9799-9802.

    60. [60]

      ZHANG K, ZHOU X, XUE X, LUO M, LIU X, XUE Z. Anal. Bioanal. Chem., 2021, 413(14):3655-3665.

    61. [61]

      LU D, JIANG H, ZHANG G, LUO Q, ZHAO Q, SHI X. ACS Appl. Mater. Interfaces, 2021, 13(22):25738-25747.

    62. [62]

      BU S, WANG K, WANG C, LI Z, HAO Z, LIU W, WAN J. Microchim. Acta, 2020, 187(12):679.

    63. [63]

      LIANG M, CAI X, GAO Y, YAN H, FU J, TANG X, ZHANG Q, LI P. Biosens. Bioelectron., 2022, 213:114435.

    64. [64]

      DU Y, KE Z, ZHANG J, FENG G. Biosens. Bioelectron., 2022, 216:114656.

    65. [65]

      LU L, HU X, ZENG R, LIN Q, HUANG X, LI M, TANG D. Anal. Chim. Acta, 2022, 1229:340383.

    66. [66]

      LIN S, HU X, LIN J, WANG S, XU J, CAI F, LIN J. Analyst, 2021, 146(13):4391-4399.

    67. [67]

      SHANG X, YU J, WANG C, DU Y. Electroanalysis, 2021, 34(3):535-541.

    68. [68]

      LI B, GE L, LYU P, CHEN M, ZHANG X, XIE S, WU Q, KWOK H F. Microchim. Acta, 2021, 188(1):14.

    69. [69]

      LAN T, ZHANG J, LU Y. Biotechnol. Adv., 2016, 34(3):331-341.

    70. [70]

      ZHANG X, HUANG X, WANG Z, ZHANG Y, HUANG X, LI Z, DAGLIA M, XIAO J, SHI J, ZOU X. Chem. Eng. J., 2022, 429:132243.

    71. [71]

      KIM H Y, PARK K S, PARK H G. Theranostics, 2020, 10(10):4507-4514.

    72. [72]

      SANATI A, ESMAEILI Y, BIDRAM E, SHARIATI L, RAFIENIA M, MAHSHID S, PARLAK O. Appl. Mater. Today, 2022, 26:101350.

    73. [73]

      LI J, JIAO L, XIAO X, NASHALIAN A, MATHUR S, ZHU Z, WU W, GUO W, ZHAI Y, LU X, CHEN J. Electroanalysis, 2022, 34(11):1763-1771.

    74. [74]

      KOMKOVA M A, ELISEEV A A, POYARKOV A A, DABOSS E V, EVDOKIMOV P V, ELISEEV A A, KARYAKIN A A. Biosens. Bioelectron., 2022, 202:113970.

    75. [75]

      YU K, LI M, CHAI H, LIU Q, HAI X, TIAN M, QU L, XU T, ZHANG G, ZHANG X. Chem. Eng. J., 2023, 451:138321.

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(8)
  • Abstract views(2050)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return