Citation: ZHAO Dan,  LI Juan,  MA Xiao,  WANG Fang,  YANG Ren-Wei,  LI Jie,  SUN Jian. Fluorescence Detection of Glyphosate Based on Copper Ion-mediated Au/Ag Bimetallic Nanoclusters[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 521-530. doi: 10.19756/j.issn.0253-3820.221591 shu

Fluorescence Detection of Glyphosate Based on Copper Ion-mediated Au/Ag Bimetallic Nanoclusters

  • Corresponding author: LI Juan,  SUN Jian, 
  • Received Date: 1 December 2022
    Revised Date: 17 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22104046), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 23IRTSTHN009), the Project of Science and Technology Department of Henan Province (Nos. 212102210122, 222102320224), the Education Key Project of Henan Provincial Department (No. 23A150056) and the Development Project of Science and Technology of Jilin Province, China (No. 20200201091JG).

  • By taking advantage of the competitive reaction between Cu2+, Au/Ag bimetallic nanoclusters capped with 11-mercaptoundecanoic acid (AuAgNCs@11-MUA) and glyphosate, a simple and sensitive " turn-on" fluorescence method was devised for glyphosate detection. The fluorescence of AuAgNCs@11-MUA could be selectively quenched by Cu2+ owing to the binding between Cu2+ and carboxyl groups of AuAgNCs@11-MUA. Due to the specific interaction between Cu2+ and functional groups of glyphosate, the pre-incubation of Cu2+ and glyphosate could disturb the combination of Cu2+ and AuAgNCs@11-MUA and AuAgNCs@11-MUA emitted intense fluorescence again, and thus glyphosate could be quantitatively detected. The optimum pH was 7.0 and the incubation time of Cu2+ and glyphosate was 2 min. Under the optimized conditions, the developed method showed a good linear relationship for detection of glyphosate in the concentration range of 0.025-1.0 μg/mL, with an inspiring detection limit as low as 8 ng/mL. In addition, an " Implication" logic gate was rationally devised by employing Cu2+ and glyphosate as inputs. Such unprecedented " turn-on" analytical proposal possessed many advantages such as fast response time, high selectivity and sensitivity. The AuAgNCs@11-MUA-Cu2+ system could be used for detection of glyphosate in actual water samples with satisfactory results.
  • 加载中
    1. [1]

      YANG Y, LI L, LIN L, WANG X, LI J, LIU H, LIU X, HUO D, HOU C. Anal. Bioanal. Chem., 2022, 414(8):2619-2628.

    2. [2]

      WU C, LI T, LI D, JIA S, HUANG J, LEI H, ZHANG M. Chin. Chem. Lett., 2021, 32(7):2174-2178.

    3. [3]

      PEILLEX C, PELLETIER M. J. Immunotoxicol., 2020, 17(1):163-174.

    4. [4]

    5. [5]

    6. [6]

      CHEN Q, CHEN H, LI Z, PANG J, LIN T, GUO L, FU F F. J. Nanosci. Nanotechnol., 2017, 17(8):5730-5734.

    7. [7]

      CHANG Y, ZHANG Z, HAO J, YANG W, TANG J. Sens. Actuators, B, 2016, 228:410-415.

    8. [8]

      TAI S, QIAN Z, REN H, BARIMAH A O, PENG C, WEI X. Anal. Chim. Acta, 2022, 1222:339992.

    9. [9]

    10. [10]

      SOK V, FRAGOSO A. Microchim. Acta, 2019, 186(8):569-574.

    11. [11]

      GUO J, ZHANG Y, LUO Y, SHEN F, SUN C. Talanta, 2014, 125:385-392.

    12. [12]

      WANG L, BI Y, GAO J, LI Y, DING H, DING L. RSC Adv., 2016, 6(89):85820-85828.

    13. [13]

      HOU J, WANG X, LAN S, ZHANG C, HOU C, HE Q, HUO D. Anal. Methods, 2020, 12(33):4130-4138.

    14. [14]

      WANG X, YANG Y, HUO D, JI Z, MA Y, YANG M, LUO H, LUO X, HOU C, LV J. Microchim. Acta, 2020, 187(6):341.

    15. [15]

    16. [16]

      MI W Y, TANG S, GUO S S, LI H J, SHAO N. Chin. Chem. Lett., 2022, 33(3):1331-1336.

    17. [17]

      MATYLDA W, HANNA N, WOJCIECH D. J. J. Mater. Chem. C, 2022, 10(10):3775-3783.

    18. [18]

      SHELLAIAH M, SIMON T, THIRUMALAIVASAN N, SUN K W, KO F H, WU S P. Microchim. Acta, 2019, 186(12):788.

    19. [19]

      LIU Z, WANG X, REN X, LI W, SUN J, WANG X, HUANG Y, GUO Y, ZENG H. Food Chem., 2021, 355:129633.

    20. [20]

      SUN J, YANG F, ZHAO D, CHEN C, YANG X. ACS Appl. Mater. Interfaces, 2015, 7(12):6860-6866.

    21. [21]

      WANG M J, ZHOU X B, WANG X Y, WANG M K, SU X G. Sens. Actuators, B, 2021, 345:130407.

    22. [22]

      LIU Q, YAN X, LAI Q, SU X G. Sens. Actuators, B, 2019, 282:45-51.

    23. [23]

      GUI M F, JIANG J, WANG X, YAN Y X, LI S Q, XIAO X L, LIU T B, LIUT G, FENG Y. Sens. Actuators, B, 2017, 243:696-703.

    24. [24]

      MOTEKAITIS R J, MARTELL A E. J. Coord. Chem., 1985, 14(2):139-149.

    25. [25]

      SUN J, WU H, JIN Y. Nanoscale, 2014, 6(10):5449-5457.

    26. [26]

      WANG Q Q, HU R, FANG Z Q, SHI G, ZHANG S, ZHANG M. Chin. Chem. Lett., 2022, 33(8):3782-3786.

    27. [27]

    28. [28]

      ZHAO D, CHEN C X, ZHAO J H, SUN J, YANG X R. Sens. Actuators, B, 2017, 247:392-399.

    29. [29]

      YUAN Y S, JIANG J Z, LIU S P, ZHANG H, YAN J J, HU X L. Sens. Actuators, B, 2017, 242:545-553.

    30. [30]

      HONG C, YE S, DAI C, WU C, CHEN L, HUANG Z. Anal. Bioanal. Chem., 2020, 412(29):8177-8184.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    3. [3]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(10)
  • Abstract views(1057)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return