Citation: DU Wan-Qing,  SONG Wen-Qi,  LIANG Tian-Yu,  SUN Xiao-Fei,  TANG Li-Jun,  ZHONG Ke-Li. Synthesis and Application of Near Infrared Mercury (Ⅱ) Fluorescent Probe Based on Dicyanoisophorone[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 421-428. doi: 10.19756/j.issn.0253-3820.221583 shu

Synthesis and Application of Near Infrared Mercury (Ⅱ) Fluorescent Probe Based on Dicyanoisophorone

  • Corresponding author: ZHONG Ke-Li, zhongkeli2000@bhu.edu.cn
  • Received Date: 25 November 2022
    Revised Date: 18 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22278038, 32201948), the Scientific Research Fund of Liaoning Provincial Education Department (Nos. LJKMZ20221480, LJKQZ2021135) and the Program for Distinguished Professor of Liaoning Province.

  • A novel fluorescence probe SAM-S with near infrared emission (675 nm) was synthesized by a two-step reaction using dicyanoisophorone and 4-diethylaminosalicylaldehyde as raw materials. The probe showed a weak fluorescence in CH3OH/HEPES buffer (1∶1, V/V, pH = 7.4) solution, and the fluorescence was significantly enhanced only after adding Hg2+. Therefore, a new method for detecting Hg2+ was established. SAM-S for detection of Hg2+ possessed many advantages such as good selectivity, strong anti-interference ability, and low detection limit (0.49 μmol/L). The content of Hg2+ in lake water and tap water was determined by this method, and the recoveries were between 99.9% and 104.8%. In addition, the probe SAM-S could be produced into fluorescent ink, which was expected to be used for trademark packaging. Meanwhile, because of the low toxicity of SAM-S, probe SAM-S could perform fluorescence imaging of Hg2+ in living cells.
  • 加载中
    1. [1]

      GAO Q, JIAO Y, HE C, DUAN C. Molecules, 2019, 24(12):2268.

    2. [2]

      JIAO X, LIU C, HE S, ZHAO L, ZENG X. Dyes Pigm., 2019, 160:86-92.

    3. [3]

      GONG J, LIU C, JIAO X, HE S, ZHAO L, ZENG X. Org. Biomol. Chem., 2020, 18(27):5238-5244.

    4. [4]

      DING Y, PAN Y, HAN Y. Ind. Eng. Chem. Res., 2019, 58(19):7786-7793.

    5. [5]

      LI S, HUANG D, WAN J, YAN S, JIANG J, XIAO H. Sens. Actuators, B, 2018, 275:101-109.

    6. [6]

      LI Y, QI S, XIA C, XU Y, DUAN G, GE Y. Anal. Chim. Acta, 2019, 1077:243-248.

    7. [7]

      CHEN H, CHEN J, JIN X, WEI D. J. Hazard. Mater., 2009, 172(2-3):1282-1287.

    8. [8]

      WANG M, FENG W, SHI J, ZHANG F, WANG B, ZHU M, LI B, ZHAO Y, CHAI Z. Talanta, 2007, 71(5):2034-2039.

    9. [9]

      TANG L, TIAN M, CHEN H, YAN X, ZHONG K, BIAN Y. Dyes Pigm., 2018, 158:482-489.

    10. [10]

      DUAN Q, ZHU H, LIU C, YUAN R, FANG Z, WANG Z, JIA P, LI Z, SHENG W, ZHU B. Analyst, 2019, 144(4):1426-1432.

    11. [11]

      TIAN L, SUN X, ZHOU L, ZHONG K, LI S, YAN X, TANG L. Food Chem., 2023, 401:135031.

    12. [12]

      WU D, CHEN L, LEE W, KO G, YIN J, YOON J. Coord. Chem. Rev., 2018, 354:74-97.

    13. [13]

      ZHONG K, HU X, ZHOU S, LIU X, GAO X, TANG L, YAN X. J. Agric. Food Chem., 2021, 69(16):4628-4634.

    14. [14]

      PAN Y, BAN L, LI J, LIU M, TANG L, YAN X. Dyes Pigm., 2022, 203:110305.

    15. [15]

      HE Y, SUN X, YAN X, LI Y, ZHONG K, TANG L. J. Mater. Chem. C, 2022, 10(23):9009-9016.

    16. [16]

      LI G, GAO G, CHENG J, CHEN X, ZHAO Y, YE Y. Luminescence, 2016, 31(4):992-996.

    17. [17]

      GUO Y, AN J, TANG H, PENG M, SUZENET F. Mater. Res. Bull., 2015, 63:155-163.

    18. [18]

      WANG J, NIU Q, HU T, LI T, WEI T. J. Photochem. Photobiol., A, 2019, 384:112036.

    19. [19]

      ZHONG K, ZHOU X, HOU R, ZHOU P, HOU S, BIAN Y, ZHANG G, TANG L, SHANG X. RSC Adv., 2014, 4(32):16612.

    20. [20]

      YAN Z, YUEN M F, HU L, SUN P, LEE C S. RSC Adv., 2014, 4(89):48373-48388.

    21. [21]

      HUANG L, YANG Z, ZHOU Z, LI Y, TANG S, XIAO W, HU M, PENG C, CHEN Y, GU B, LI H. Dyes Pigm., 2019, 163:118-125.

    22. [22]

      LIU Y, NAHA S, THIRUMALAIVASAN N, VELMATHI S, WU S P. Sens. Actuators, B, 2018, 277:673-678.

    23. [23]

      LIU B, LIU J, HE J, ZHANG J, ZHOU H, GAO C. Chem. Phys., 2020, 539:110944.

    24. [24]

      GAO Y, MA T, OU Z, CAI W, YANG G, LI Y, XU M, LI Q. Talanta, 2018, 178:663-669.

    25. [25]

      LI Q, HU Y, HOU H N, YANG W N, HU S L. Inorg. Chim. Acta, 2018, 471:705-708.

    26. [26]

      XU J, XU Z, WANG Z, LIU C, ZHU B, WANG X, WANG K, WANG J, SANG G. Luminescence, 2018, 33(1):219-224.

    27. [27]

      TIAN Q Q, ZHAO Z G, SHI Z C. Inorg. Chim. Acta, 2021, 521:120349.

    28. [28]

      LI X, DUAN Q, YU Y, WANG K, ZHU H, ZHANG X, LIU C, JIA P, LI Z, SHENG W, ZHU B. Luminescence, 2020, 35(6):941-946.

    29. [29]

      YUAN G, LV H, LIU H, HE H, SUN Q, ZHANG X, WANG S. Dyes Pigm., 2020, 183:108674.

    30. [30]

      TANG L, ZHOU L, YAN X, ZHONG K, GAO X, LI J. J. Photochem. Photobiol., A, 2020, 387:112160.

    31. [31]

      SHU W, WANG Y, WU L, WANG Z, DUAN Q, GAO Y, LIU C, ZHU B, YAN L. Ind. Eng. Chem. Res., 2016, 55(32):8713-8718.

    32. [32]

      DUAN Q, LV X, LIU C, GENG Z, ZHANG F, SHENG W, WANG Z, JIA P, LI Z, ZHU H, ZHU B. Ind. Eng. Chem. Res., 2019, 58(1):11-17.

    33. [33]

      LI Y, SUN X, ZHOU L, TIAN L, ZHONG K, ZHANG J, YAN X, TANG L. J. Agric. Food Chem., 2022, 70(35):10899-10906.

    34. [34]

      ZHONG K, ZHOU S, YAN X, LI X, HOU S, CHENG L, GAO X, LI Y, TANG L. Dyes Pigm., 2020, 174:108049.

    35. [35]

      PAN X T, LI Q, XU Y Y, HU S L. J. Chem. Res., 2020, 44(5-6):349-353.

    36. [36]

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    4. [4]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    8. [8]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    18. [18]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(16)
  • Abstract views(942)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return