Citation: SUN Chen-Fang,  WANG Tie. Research and Application Progress of Organic Field-Effect Transistor-based Gas Sensing Array[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 777-789. doi: 10.19756/j.issn.0253-3820.221580 shu

Research and Application Progress of Organic Field-Effect Transistor-based Gas Sensing Array

  • Corresponding author: WANG Tie, wangtie@email.tjut.edu.cn
  • Received Date: 23 November 2022
    Revised Date: 31 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21925405, 22104141, 22104142, 22004122, 201874005) and the National Key Research and Development Program of China (Nos. 2018YFA0208800, 2021YFD1700300).

  • In recent years, all kinds of gas-sensing technologies have received more and more attention in the fields of environmental monitoring, disease diagnosis and industrial safety. Among them, gas sensors based on organic field-effect transistors (OFETs) have developed rapidly in the sensing field due to their unique signal conversion and amplification functions, as well as the advantages such as miniaturization and integration. Starting from the device structure of OFETs, this review introduced and analyzed the selection of materials, the optimization of preparation processes, and the practical application in recent years, highlighting its unique advantages in the sensing field. Finally, the current difficulties and challenges of OFETs-based gas sensors were also summarized.
  • 加载中
    1. [1]

      LUO X, DAVIS J J. Chem. Soc. Rev., 2013, 42(13):5944-5962.

    2. [2]

      ZHANG C, CHEN P, HU W. Chem. Soc. Rev., 2015, 44(8):2087-2107.

    3. [3]

      WU M, HOU S, YU X, YU J. J. Mater. Chem. C, 2020, 8(39):13482-13500.

    4. [4]

      CAVALLARI M R, PASTRANA L M, SOSA C D F, MARQUINA A M R, IZQUIERDO J E E, FONSECA F J, AMORIM C A, PATERNO L G, KYMISSIS I. Materials, 2021, 14(1):3.

    5. [5]

      HONG S, WU M, HONG Y, JEONG Y, JUNG G, SHIN W, PARK J, KIM D, JANG D, LEE J H. Sens. Actuators, B, 2021, 330:129240.

    6. [6]

      PARK M S, MERESA A A, KWON C M, KIM F S. Polymers, 2019, 11(10):1682.

    7. [7]

      ZANG Y, ZHANG F, HUANG D, DI C, MENG Q, GAO X, ZHU D. Adv. Mater., 2014, 26(18):2862-2867.

    8. [8]

      WANG C, DONG H, HU W, LIU Y, ZHU D. Chem. Rev., 2012, 112(4):2208-2267.

    9. [9]

      WANG C, ZHANG X, DONG H, CHEN X, HU W. Adv. Energy Mater., 2020, 10(29):2000955.

    10. [10]

      LIN P, YAN F. Adv. Mater., 2012, 24(1):34-51.

    11. [11]

      SHEN H, DI C A, ZHU D. Sci. China Chem., 2017, 60(4):437-449.

    12. [12]

      LI H, SHI W, SONG J, JANG H J, DAILEY J, YU J, KATZ H E. Chem. Rev., 2019, 119(1):3-35.

    13. [13]

      KUBOTA R, SASAKI Y, MINAMIKI T, MINAMI T. ACS Sens., 2019, 4(10):2571-2587.

    14. [14]

      WANG Y, GONG Q, MIAO Q. Mater. Chem. Front., 2020, 4(12):3505-3520.

    15. [15]

      SOMEYA T, DODABALAPUR A, HUANG J, SEE K C, KATZ H E. Adv. Mater., 2010, 22(34):3799-3811.

    16. [16]

      MIRZA M, WANG J, WANG L, HE J, JIANG C. Org. Electron., 2015, 24:96-100.

    17. [17]

      HUANG J, MIRAGLIOTTA J, BECKNELL A, KATZ H E. J. Am. Chem. Soc., 2007, 129(30):9366-9376.

    18. [18]

      LIU D, CHU Y, WU X, HUANG J. Sci. China Mater., 2017, 60(10):977-984.

    19. [19]

      JEONG J W, LEE Y D, KIM Y M, PARK Y W, CHOI J H, PARK T H, SOO C D, WON S M, HAN I K, JU B K. Sens. Actuators, B, 2010, 146:40-45.

    20. [20]

      KLINE R J, MCGEHEE M D, KADNIKOVA E N, LIU J, FRÉCHET J M J. Adv. Mater., 2003, 15(18):1519-1522.

    21. [21]

      SAVVA A, HALLANI R, CENDRA C, SURGAILIS J, HIDALGO T C, WUSTONI S, SHEELAMANTHULA R, CHEN X, KIRKUS M, GIOVANNITTI A, SALLEO A, MCCULLOCH I, INAL S. Adv. Funct. Mater., 2020, 30(11):1907657.

    22. [22]

      CHANG J F, SUN B, BREIBY D W, NIELSEN M M, SÖLLING T I, GILES M, MCCULLOCH I, SIRRINGHAUS H. Chem. Mater., 2004, 16(23):4772-4776.

    23. [23]

      YANG Y, ZHANG G, LUO H, YAO J, LIU Z, ZHANG D. ACS Appl. Mater. Interfaces, 2016, 8(6):3635-3643.

    24. [24]

      YANG Y, KATZ H E. J. Mater. Chem. C, 2017, 5(8):2160-2166.

    25. [25]

      YUVARAJA S, SURYA S G, CHERNIKOVA V, VIJJAPU M T, SHEKHAH O, BHATT P M, CHANDRA S, EDDAOUDI M, SALAMA K N. ACS Appl. Mater. Interfaces, 2020, 12(16):18748-18760.

    26. [26]

      RUBIO-GIMÉNEZ V, ALMORA-BARRIOS N, ESCORCIA-ARIZA G, GALBIATI M, SESSOLO M, TATAY S, MARTÍ-GASTALDO C. Angew. Chem. Int. Ed., 2018, 57(46):15086-15090.

    27. [27]

      LU J, LIU D, ZHOU J, CHU Y, CHEN Y, WU X, HUANG J. Adv. Funct. Mater., 2017, 27(20):1700018.

    28. [28]

      YU S H, GIRMA H G, SIM K M, YOON S, PARK J M, KONG H, CHUNG D S. Nanoscale, 2019, 11(38):17709-17717.

    29. [29]

      HUANG L, WANG Z, CHEN J, WANG B, CHEN Y, HUANG W, CHI L, MARKS T J, FACCHETTI A. Adv. Mater., 2021, 33(14):2007041.

    30. [30]

      LAN L, CHEN J, WANG Y, LI P, YU Y, ZHU G, LI Z, LEI T, YUE W, MCCULLOCH I. Chem. Mater., 2022, 34(4):1666-1676.

    31. [31]

      GUO D Y, TSAI Y, YU T F, LEE W Y. J. Mater. Chem. C, 2018, 6(44):12006-12015.

    32. [32]

      MOREIRA J, VALE A C, ALVES N M. J. Mater. Chem. B, 2021, 9(18):3778-3799.

    33. [33]

      VEGIRAJU S, LUO X L, LI L H, AFRAJ S N, LEE C, ZHENG D, HSIEH H C, LIN C C, HONG S H, TSAI H C, LEE G H, TUNG S H, LIU C L, CHEN M C, FACCHETTI A. Chem. Mater., 2020, 32(4):1422-1429.

    34. [34]

      ZHANG F, QU G, MOHAMMADI E, MEI J, DIAO Y. Adv. Funct. Mater., 2017, 27(23):1701117.

    35. [35]

      GAO X, DUAN S, LI J, KHAN D, ZOU Y, ZHENG L, LIU J, REN X, HU W. J. Mater. Chem. C, 2018, 6(46):12498-12502.

    36. [36]

      MINEMAWARI H, YAMADA T, MATSUI H, TSUTSUMI J, HAAS S, CHIBA R, KUMAI R, HASEGAWA T. Nature, 2011, 475(7356):364-367.

    37. [37]

      DUAN S, GAO X, WANG Y, YANG F, CHEN M, ZHANG X, REN X, HU W. Adv. Mater., 2019, 31(16):1807975.

    38. [38]

      PHUNG T H, GAFUROV A N, KIM I, KIM S Y, KIM K M, LEE T M. Sci. Rep., 2021, 11(1):19982.

    39. [39]

      DUAN S, WANG T, GENG B, GAO X, LI C, ZHANG J, XI Y, ZHANG X, REN X, HU W. Adv. Mater., 2020, 32(12):1908388.

    40. [40]

      ANDERSSON ERSMAN P, LASSNIG R, STRANDBERG J, TU D, KESHMIRI V, FORCHHEIMER R, FABIANO S, GUSTAFSSON G, BERGGREN M. Nat. Commun., 2019, 10(1):5053.

    41. [41]

      LI J, LI L, CHEN Q, ZHU W, ZHANG J. J. Mater. Chem. C, 2022, 10(3):860-869.

    42. [42]

      JIANG S, CHENG R, WANG X, XUE T, LIU Y, NEL A, HUANG Y, DUAN X. Nat. Commun., 2013, 4(1):2225.

    43. [43]

      XIE H, LI Y T, LEI Y M, LIU Y L, XIAO M M, GAO C, PANG D W, HUANG W H, ZHANG Z Y, ZHANG G J. Anal. Chem., 2016, 88(22):11115-11122.

    44. [44]

      HU J, CHEN X, ZHANG Y. Sens. Actuators, B, 2021, 349:130738.

    45. [45]

      WEI S, TIAN F, GE F, WANG X, ZHANG G, LU H, YIN J, WU Z, QIU L. ACS Appl. Mater. Interfaces, 2018, 10(26):22504-22512.

    46. [46]

      NKETIA-YAWSON B, JUNG A R, NOH Y, RYU G S, TABI G D, LEE K K, KIM B S, NOH Y Y. ACS Appl. Mater. Interfaces, 2017, 9(8):7322-7330.

    47. [47]

      LU C F, SHIH C W, CHEN C A, CHIN A, SU W F. Adv. Funct. Mater., 2018, 28(40):1803145.

    48. [48]

      LI H, SHI Y, HAN G, LIU J, ZHANG J, LI C, LIU J, YI Y, LI T, GAO X, DI C, HUANG J, CHE Y, WANG D, HU W, LIU Y, JIANG L. Angew. Chem. Int. Ed., 2020, 59(11):4380-4384.

    49. [49]

      SONG Z, LIU G, TANG Q, ZHAO X, TONG Y, LIU Y. Org. Electron., 2017, 48:68-76.

    50. [50]

      LEE J H, SEO Y, PARK Y D, ANTHONY J E, KWAK D H, LIM J A, KO S, JANG H W, CHO K, LEE W H. Sci. Rep., 2019, 9(1):21.

    51. [51]

      SHAO B, LIU Y, ZHUANG X, HOU S, HAN S, YU X, YU J. J. Mater. Chem. C, 2019, 7(33):10196-10202.

    52. [52]

      ZHUANG X, HUANG W, HAN S, JIANG Y, ZHENG H, YU J. Org. Electron., 2017, 49:334-339.

    53. [53]

      HAN S, YANG Z, LI Z, ZHUANG X, AKINWANDE D, YU J. ACS Appl. Mater. Interfaces, 2018, 10(44):38280-38286.

    54. [54]

      ZHUANG X, HAN S, HUAI B, SHI W, YU J. Sens. Actuators, B, 2019, 279:238-244.

    55. [55]

      HUANG W, ZHUANG X, MELKONYAN F S, WANG B, ZENG L, WANG G, HAN S, BEDZYK M J, YU J, MARKS T J, FACCHETTI A. Adv. Mater., 2017, 29(31):1701706.

    56. [56]

      SONG R, ZHOU X, WANG Z, ZHU L, LU J, XUE D, WANG Z, HUANG L, CHI L. Org. Electron., 2021, 91:106083.

    57. [57]

      LV A, WANG M, WANG Y, BO Z, CHI L. Chem. Eur. J., 2016, 22(11):3654-3659.

    58. [58]

      SURYA S G, ASHWATH B S N, MISHRA S, KARTHIK A R B, SASTRY A B, PRASAD B L V, RANGAPPA D, RAO V R. Sens. Actuators, B, 2016, 235:378-385.

    59. [59]

      YANG Y, LIU Z, CHEN L, YAO J, LIN G, ZHANG X, ZHANG G, ZHANG D. Chem. Mater., 2019, 31(5):1800-1807.

    60. [60]

      QIAO X, CHEN X, HUANG C, LI A, LI X, LU Z, WANG T. Angew. Chem. Int. Ed., 2019, 58(46):16523-16527.

    61. [61]

      LIU L, XIONG W, CUI L, XUE Z, HUANG C, SONG Q, BAI W, PENG Y, CHEN X, LIU K, ZHANG S, WEN L, CHE Y, WANG T. Angew. Chem. Int. Ed., 2020, 59(37):15953-15957.

    62. [62]

      WU X, HUANG J. IEEE J. Em. Sel. Top. C., 2017, 7(1):92-101.

    63. [63]

      CRONE B, DODABALAPUR A, GELPERIN A, TORSI L, KATZ H E, LOVINGER A J, BAO Z. Appl. Phys. Lett., 2001, 78(15):2229-2231.

    64. [64]

      CHANG J B, LIU V, SUBRAMANIAN V, SIVULA K, LUSCOMBE C, MURPHY A, LIU J, FRÉCHET J M J. J. Appl. Phys., 2006, 100(1):014506.

    65. [65]

      ANISIMOV D S, CHEKUSOVA V P, TRUL A A, ABRAMOV A A, BORSHCHEV O V, AGINA E V, PONOMARENKO S A. Sci. Rep., 2021, 11(1):10683.

    66. [66]

      NI Z, WANG H, DONG H, DANG Y, ZHAO Q, ZHANG X, HU W. Nat. Chem., 2019, 11(3):271-277.

    67. [67]

      WANG P, LIU D, WANG Y, ZHANG P, YU P, WANG M, ZHEN Y, DONG H, HU W. Chin. Chem. Lett., 2020, 31(11):2909-2912.

    68. [68]

      FU L N, LENG B, LI Y S, GAO X K. Chin. Chem. Lett., 2018, 29(1):175-178.

    69. [69]

      YAO Y, CHEN Y, WANG H, SAMORì P. SmartMat, 2020, 1(1):e1009.

    70. [70]

      JI J, YANG B, ZHANG C, CAI Y, CHEN J, ZHAO C, WANG T, WU L, LIU M, BAI J, WANG J, WU Z, CHEN S, LING H, AN Z, CHEN Y, WANG J, HUANG W, MENG H. SmartMat, 2022, 4(2):e1153.

    71. [71]

      DONG H, JIANG S, JIANG L, LIU Y, LI H, HU W, WANG E, YAN S, WEI Z, XU W, GONG X. J. Am. Chem. Soc., 2009, 131(47):17315-17320.

    72. [72]

      ZHEN Y G, DONG H L, JIANG L, HU W P. Chin. Chem. Lett., 2016, 27(8):1330-1338.

    73. [73]

      XU J, WU H C, ZHU C, EHRLICH A, SHAW L, NIKOLKA M, WANG S, MOLINA-LOPEZ F, GU X, LUO S, ZHOU D, KIM Y H, WANG G J N, GU K, FEIG V R, CHEN S, KIM Y, KATSUMATA T, ZHENG Y Q, YAN H, CHUNG J W, LOPEZ J, MURMANN B, BAO Z. Nat. Mater., 2019, 18(6):594-601.

    74. [74]

      QIN Z, GAO H, DONG H, HU W. Adv. Mater., 2021, 33(31):e2007149.

    75. [75]

      GAO H, MIAO Z, QIN Z, YANG J, WANG T, GAO C, DONG H, HU W. Adv. Mater., 2022, 34(8):e2108795.

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(6)
  • Abstract views(2092)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return