Citation: TAN Rong,  QIN Ying,  HU Liu-Yong,  XU Miao,  GU Wen-Ling,  ZHU Cheng-Zhou. Photoelectrochemical Sensing Based on Photocurrent Polarity Switching Strategies[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 757-768. doi: 10.19756/j.issn.0253-3820.221576 shu

Photoelectrochemical Sensing Based on Photocurrent Polarity Switching Strategies

  • Corresponding author: HU Liu-Yong,  GU Wen-Ling,  ZHU Cheng-Zhou, 
  • Received Date: 22 November 2022
    Revised Date: 29 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22104114) and the Fundamental Research Funds for the Central Universities of China (No. CCNU22JC006).

  • Photoelectrochemical (PEC) sensing, as a new sensing technology that combines PEC process and target recognition reactions, has been rapidly developed in the field of analysis. Based on its characteristics of photoexcitation-electrical detection, PEC sensing has attracted great attention due to its advantages such as low background signal, high sensitivity and so on. At present, common PEC sensing detection modes are mainly divided into signal-off and signal-on modes, but both modes depend on the change of a single output signal. The presence of possible redox-active interferents in the actual detection will increase or decrease photocurrents, which will inevitably lead to false positive or false negative results. By contrast, PEC sensing strategy based on photocurrent polarity switching can output the photocurrent signals with different polarity after identifying the target, instead of only increasing or decreasing the photocurrent signals. Therefore, it can effectively improve the anti-interference ability and accuracy. In this paper, common PEC sensing strategies were reviewed, with emphasis on the photocurrent polarity switching PEC sensing strategy. In the end, further development prospects of PEC sensing were proposed.
  • 加载中
    1. [1]

      TANG S, QIU W, XIAO S, TONG Y, YANG S. Energy Environ. Sci., 2020, 13(3):660-684.

    2. [2]

      WU H, TAN H L, TOE C Y, SCOTT J, WANG L Z, AMAL R, NG Y H. Adv. Mater., 2020, 32(18):e1904717.

    3. [3]

      LV J, XIE J, MOHAMED A G A, ZHANG X, WANG Y. Chem. Soc. Rev., 2022, 51(4):1511-1528.

    4. [4]

      BRATTAIN W H, GARRETT C G B. Bell Syst. Tech. J., 1955, 34(1):129-176.

    5. [5]

      POPPE J, HICKEY S G, EYCHMÜLLER A. J. Phys. Chem. C, 2014, 118(30):17123-17141.

    6. [6]

      YE X, WANG X, KONG Y, DAI M, HAN D, LIU Z. Angew. Chem. Int. Ed., 2021, 60(21):11774-11778.

    7. [7]

      YAN K, KARTHICK KANNAN P, DOONYAPISUT D, WU K, CHUNG C, ZHANG J. Adv. Funct. Mater., 2020, 31(12):2008227.

    8. [8]

      WANG H Y, XU Y T, WANG B, YU S Y, SHI X M, ZHAO W W, JIANG D C, CHEN H Y, XU J J. Angew. Chem. Int. Ed., 2022. 61(47):e202212752.

    9. [9]

      LI H, HAN M, WENG X, ZHANG Y, LI J. ACS Nano, 2021, 15(1):1710-1717.

    10. [10]

      LI H, CAO Y, WU T, ZHANG Y, ZHENG Z, LV J, MAO A, ZHANG Y, TANG Q, LI J. Anal. Chem., 2021, 93(31):11043- 11051.

    11. [11]

      GAO N, WANG X, FENG J, LI X, WANG H, FAN D, ZHANG Y, MA H, WEI Q, JU H. Adv. Mater. Interfaces, 2021, 8(14):2100421.

    12. [12]

      SHI J, CHEN Z, ZHAO C, SHEN M, LI H, ZHANG S, ZHANG Z. Coord. Chem. Rev., 2022, 469:214675.

    13. [13]

      XIE X L, WANG D P, GUO C X, LIU Y H, RAO Q H, LOU F M, LI Q N, DONG Y Q, LI Q F, YANG H B, HU F X. Anal. Chem., 2021, 93(11):4916-4923.

    14. [14]

      FUJISHIMA A, HONDA K. Nature, 1972, 238(5358):37-38.

    15. [15]

      RUAN Y F, ZHANG N, ZHU Y C, ZHAO W W, XU J J, CHEN H Y. Acta Phys.-Chim. Sin., 2017, 33(3):476-485.

    16. [16]

      WANG J, LIU Z H. TrAC, Trends Anal. Chem., 2020, 133:116089.

    17. [17]

      ZHANG X, GUO Y, LIU M, ZHANG S. RSC Adv., 2013, 3(9):2846-2857.

    18. [18]

      YU S Y, ZHANG L, ZHU L B, GAO Y, FAN G C, HAN D M, CHEN G, ZHAO W W. Coord. Chem. Rev., 2019, 393:9-20.

    19. [19]

      ZHAO W W, XU J J, CHEN H Y. Chem. Soc. Rev., 2015, 44(3):729-741.

    20. [20]

      YANG L, ZHANG S, LIU X, TANG Y, ZHOU Y, WONG D K Y. J. Mater. Chem. B, 2020, 8(35):7880-7893.

    21. [21]

      LIANG J H, CHEN D, YAO X, ZHANG K X, QU F L, QIN L S, HUANG Y X, LI J H. Small, 2020, 16(15):e1903398.

    22. [22]

      LI T, DONG H, HAO Y, ZHANG Y, CHEN S, XU M, ZHOU Y. Electroanalysis, 2021, 34(6):956-965.

    23. [23]

      GE L, LIU Q, HAO N, KUN W. J. Mater. Chem. B, 2019, 7(46):7283-7300.

    24. [24]

      CHEN M, MENG H, MO F, GUO J, FU Y. Biosens. Bioelectron., 2021, 191:113475.

    25. [25]

      QIU Z, TANG D. J. Mater. Chem. B, 2020, 8(13):2541-2561.

    26. [26]

      ZANG Y, LEI J, JU H. Biosens. Bioelectron., 2017, 96:8-16.

    27. [27]

      SHU J, TANG D. Anal. Chem., 2020, 92(1):363-377.

    28. [28]

      DEVADOSS A, SUDHAGAR P, TERASHIMA C, NAKATA K, FUJISHIMA A. J. Photochem. Photobiol., C, 2015, 24:43- 63.

    29. [29]

      TU W W, WANG Z Y, DAI Z H. TrAC, Trends Anal. Chem., 2018, 105:470-483.

    30. [30]

      ZHOU Q, TANG D P. TrAC, Trends Anal. Chem., 2020, 124:115814.

    31. [31]

      LIU Q, ZHANG H, JIANG H, YANG P, LUO L, NIU Q, YOU T. Biosens. Bioelectron., 2022, 216:114634.

    32. [32]

      ZHAO W W, XU J J, CHEN H Y. Chem. Rev., 2014, 114(15):7421-7441.

    33. [33]

      WANG M, LIANG G, WANG M, HU M, ZHU L, LI Z, ZHANG Z, HE L, DU M. Chem. Eng. J., 2022, 448:137779.

    34. [34]

    35. [35]

      HU J, LU M J, CHEN F Z, JIA H M, ZHOU H, LI K, ZENG X, ZHAO W W, LIN P. Adv. Funct. Mater., 2022, 32(26):2109046.

    36. [36]

    37. [37]

      GUAN X, DENG X, SONG J, WANG X, WU S. Anal. Chem., 2021, 93(17):6763-6769.

    38. [38]

      LENG D, ZHAO J, REN X, XU R, LIU L, LIU X, LI Y, WEI Q. Anal. Chem., 2021, 93(30):10712-10718.

    39. [39]

      LI Y, CHEN F Z, XU Y T, YU W J, LI H Y, FAN G C, HAN D M, ZHAO W W, JIANG D C. Anal. Chem., 2019, 91(20):12606-12610.

    40. [40]

      YIN H, WANG M, ZHOU Y, ZHANG X, SUN B, WANG G, AI S. Biosens. Bioelectron., 2014, 53:175-181.

    41. [41]

      ZHAO C Q, DING S N, XU J J, CHEN H Y. ACS Appl. Nano Mater., 2020, 3(11):11489-11496.

    42. [42]

      WU T, YU S, DAI L, FENG J, REN X, MA H, WANG X, WEI Q, JU H. ACS Sens., 2022, 7(6):1732-1739.

    43. [43]

      LONG D, TU Y, CHAI Y, YUAN R. Anal. Chem., 2021, 93(38):12995-13000.

    44. [44]

      SHEN Y Z, GUAN J, MA C, SHU Y, XU Q, HU X Y. Anal. Chem., 2022, 94(3):1742-1751.

    45. [45]

      QIN Y, WEN J, ZHENG L, YAN H, JIAO L, WANG X, CAI X, WU Y, CHEN G, CHEN L, HU L, GU W, ZHU C. Nano Lett., 2021, 21(4):1879-1887.

    46. [46]

      YANG R, JIANG G, LIU H, HE L, YU F, LIU L, QU L, WU Y. Biosens. Bioelectron., 2021, 188:113337.

    47. [47]

      DENG H M, XIAO M J, CHAI Y Q, YUAN R, YUAN Y L. Biosens. Bioelectron., 2022, 197:113806.

    48. [48]

      CHEN Y, ZHOU M, YANG J, TAN Y, DENG W, XIE Q. Anal. Chem., 2021, 93(41):13783-13790.

    49. [49]

      CHENG Q, FENG J, WU T, ZHANG N, WANG X, MA H, SUN X, WEI Q. Anal. Chem., 2021, 93(40):13680-13686.

    50. [50]

      ZHU Y, XU Z, YAN K, ZHAO H, ZHANG J. ACS Appl. Mater. Interfaces, 2017, 9(46):40452-40460.

    51. [51]

      CHEN G, QIN Y, JIAO L, HUANG J, WU Y, HU L, GU W, XU D, ZHU C. Anal. Chem., 2021, 93(17):6881-6888.

    52. [52]

      LIU M, CHEN G, QIN Y, LI J, HU L, GU W, ZHU C. Anal. Chem., 2021, 93(28):9897-9903.

    53. [53]

      QIN Y, WEN J, WANG X, JIAO L, WEI X, WANG H, LI J, LIU M, ZHENG L, HU L, GU W, ZHU C. ACS Nano, 2022, 16(2):2997-3007.

    54. [54]

      WANG Y, WANG P P, WU Y, DI J W. Sens. Actuators, B, 2018, 254:910-915.

    55. [55]

      ZHANG L, LI P, FENG L, CHEN X, JIANG J, ZHANG S, ZHANG C, ZHANG A, CHEN G, WANG H. J. Hazard. Mater., 2020, 387:121715.

    56. [56]

      FENG L, ZHANG L, CHEN X, ZHANG C, MAO G, WANG H. Chem. Eng. J., 2022, 441:136073.

    57. [57]

      GE R, LIN X, DAI H, WEI J, JIAO T, CHEN Q, OYAMA M, CHEN Q, CHEN X. ACS Appl. Mater. Interfaces, 2022, 14(36):41649-41658.

    58. [58]

      LIU Y, LIU J, ZHANG Q, ZHU Q, LIU X, WANG Z, DAI Z. Adv. Funct. Mater., 2021, 32(5):2106854.

    59. [59]

      WANG X, RONG X, ZHANG Y, LUO F, QIU B, WANG J, LIN Z. Anal. Chem., 2022, 94(8):3735-3742.

    60. [60]

      ZHANG Y, LEI J, HAO Q, JU H. ACS Appl. Mater. Interfaces, 2014, 6(18):15991-15997.

    61. [61]

      FU Y, YU Q, ZHANG Q, ZHANG X, DU C, CHEN J. Biosens. Bioelectron., 2021, 192:113547.

    62. [62]

      FU Y, XIAO K, ZHANG X, DU C, CHEN J. Anal. Chem., 2021, 93(2):1076-1083.

    63. [63]

      ZHANG Q, LIU S, DU C, FU Y, XIAO K, ZHANG X, CHEN J. Anal. Chem., 2021, 93(42):14272-14279.

    64. [64]

      ZHANG J, XUE X, DU Y, ZHAO J, MA H, REN X, WEI Q, JU H. Anal. Chem., 2022, 94(36):12368-12373.

    65. [65]

      LIU H M, JIANG G H, LIU L E, XUE L S, LI Y L, WU Y J, YANG R Y. Sens. Actuators, B, 2022, 372:132631.

    66. [66]

      JIANG G H, YANG R Y, LIU J, LIU H M, LIU L E, WU Y J, YOUMEI A. Sens. Actuators, B, 2022, 350:130859.

    67. [67]

      OUYANG B, ZHAO H, WANG Z L, YANG Y. Nano Energy, 2020, 68:104312.

    68. [68]

      WANG D, LIU X, KANG Y, WANG X, WU Y, FANG S, YU H, MEMON M H, ZHANG H, HU W, MI Z, FU L, SUN H, LONG S. Nat. Electron., 2021, 4(9):645-652.

    69. [69]

      PODBORSKA A, SUCHECKI M, MECH K, MARZEC M, PILARCZYK K, SZACIŁOWSKI K. Nat. Commun., 2020, 11(1):854.

    70. [70]

      ZHANG Y, HAO N, ZHOU Z, HUA R, QIAN J, LIU Q, LI H, WANG K. Chem. Commun., 2017, 53(43):5810-5813.

    71. [71]

      HAN J Y, WANG J, YANG M, KONG X, CHEN X Q, HUANG Z H, GUO H, GOU J, TAO S L, LIU Z M, WU Z M, JIANG Y D, WANG X R. Adv. Mater., 2018, 30(49):e1804020.

    72. [72]

      FU Y, ZOU K, LIU M, ZHANG X, DU C, CHEN J. Anal. Chem., 2020, 92(1):1189-1196.

    73. [73]

      ZHANG Q, YANG H, DU C, LIU S, ZHANG X, CHEN J. Anal. Chem., 2022, 94(39):13342-13349.

    74. [74]

      MO F, HAN M, WENG X, ZHANG Y, LI J, LI H. Anal. Chem., 2021, 93(3):1764-1770.

    75. [75]

      HOANG C V, HAYASHI K, ITO Y, GORAI N, ALLISON G, SHI X, SUN Q, CHENG Z, UENO K, GODA K, MISAWA H. Nat. Commun., 2017, 8:771.

    76. [76]

      LIAN Y, HAN J, YANG M, PENG S, ZHANG C, HAN C, ZHANG X, LIU X, ZHOU H, WANG Y, LAN C, GOU J, JIANG Y, LIAO Y, YU H, WANG J. Adv. Funct. Mater., 2022, 32(35):2205709.

    77. [77]

      RYZHKOV N V, YUROVA V Y, ULASEVICH S A, SKORB E V. RSC Adv., 2020, 10(21):12355-12359.

    78. [78]

      ZHANG X, YANG Y, LI Z, LIU X, ZHANG C, PENG S, HAN J, ZHOU H, GOU J, XIU F, WANG J. Adv. Opt. Mater., 2021, 9(21):2101256.

    79. [79]

      CHEN D B, CHEN Y C, ZENG G, LI Y C, LI X X, LI D, SHEN C, CHI N, OOI B S, ZHANG D W, LU H L. Nano Res., 2022, DOI:10.1007/s12274-022-5086-8.

    80. [80]

      FANG S, WANG D H, KANG Y, LIU X, LUO Y M, LIANG K, LI L A, YU H B, ZHANG H C, MEMON M H, LIU B Y, LIU Z H, SUN H D. Adv. Funct. Mater., 2022, 32(28):202202524.

    81. [81]

      LIU X, WANG D H, KANG Y, FANG S, YU H B, ZHANG H C, MEMON M H, HE J H, OOI B S, SUN H D, LONG S B. Adv. Funct. Mater., 2021, 32(5):202104515.

    82. [82]

      MACYK W, STOCHEL G, SZACIŁOWSKI K. Chem. Eur. J., 2007, 13(20):5676-5687.

    83. [83]

      WOJTYŁA S, BARAN T. J. Inorg. Organomet. Polym., 2016, 27(2):436-445.

    84. [84]

      HAO N, ZHANG Y, ZHONG H, ZHOU Z, HUA R, QIAN J, LIU Q, LI H, WANG K. Anal. Chem., 2017, 89(19):10133- 10136.

    85. [85]

      WANG C, ZHANG B, CAO J, ZENG B, ZHAO F. ACS Appl. Mater. Interfaces, 2022, 14(20):23743-23755.

    86. [86]

      KUBITZKY S, VENANZI M, BIONDI B, LETTIERI R, DE ZOTTI M, GATTO E. Chem. Eur. J., 2021, 27(8):2810-2817.

    87. [87]

      YASUTOMI S, MORITA T, KIMURA S. J. Am. Chem. Soc., 2005, 127(42):14564-14565.

    88. [88]

      CHEN D, LI J. J. Phys. Chem. C, 2010, 114(23):10478-10483.

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    8. [8]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    13. [13]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    19. [19]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(19)
  • Abstract views(3110)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return