Citation:
TAN Rong, QIN Ying, HU Liu-Yong, XU Miao, GU Wen-Ling, ZHU Cheng-Zhou. Photoelectrochemical Sensing Based on Photocurrent Polarity Switching Strategies[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 757-768.
doi:
10.19756/j.issn.0253-3820.221576
-
Photoelectrochemical (PEC) sensing, as a new sensing technology that combines PEC process and target recognition reactions, has been rapidly developed in the field of analysis. Based on its characteristics of photoexcitation-electrical detection, PEC sensing has attracted great attention due to its advantages such as low background signal, high sensitivity and so on. At present, common PEC sensing detection modes are mainly divided into signal-off and signal-on modes, but both modes depend on the change of a single output signal. The presence of possible redox-active interferents in the actual detection will increase or decrease photocurrents, which will inevitably lead to false positive or false negative results. By contrast, PEC sensing strategy based on photocurrent polarity switching can output the photocurrent signals with different polarity after identifying the target, instead of only increasing or decreasing the photocurrent signals. Therefore, it can effectively improve the anti-interference ability and accuracy. In this paper, common PEC sensing strategies were reviewed, with emphasis on the photocurrent polarity switching PEC sensing strategy. In the end, further development prospects of PEC sensing were proposed.
-
-
-
[1]
TANG S, QIU W, XIAO S, TONG Y, YANG S. Energy Environ. Sci., 2020, 13(3):660-684.
-
[2]
WU H, TAN H L, TOE C Y, SCOTT J, WANG L Z, AMAL R, NG Y H. Adv. Mater., 2020, 32(18):e1904717.
-
[3]
LV J, XIE J, MOHAMED A G A, ZHANG X, WANG Y. Chem. Soc. Rev., 2022, 51(4):1511-1528.
-
[4]
BRATTAIN W H, GARRETT C G B. Bell Syst. Tech. J., 1955, 34(1):129-176.
-
[5]
POPPE J, HICKEY S G, EYCHMÜLLER A. J. Phys. Chem. C, 2014, 118(30):17123-17141.
-
[6]
YE X, WANG X, KONG Y, DAI M, HAN D, LIU Z. Angew. Chem. Int. Ed., 2021, 60(21):11774-11778.
-
[7]
YAN K, KARTHICK KANNAN P, DOONYAPISUT D, WU K, CHUNG C, ZHANG J. Adv. Funct. Mater., 2020, 31(12):2008227.
-
[8]
WANG H Y, XU Y T, WANG B, YU S Y, SHI X M, ZHAO W W, JIANG D C, CHEN H Y, XU J J. Angew. Chem. Int. Ed., 2022. 61(47):e202212752.
-
[9]
LI H, HAN M, WENG X, ZHANG Y, LI J. ACS Nano, 2021, 15(1):1710-1717.
-
[10]
LI H, CAO Y, WU T, ZHANG Y, ZHENG Z, LV J, MAO A, ZHANG Y, TANG Q, LI J. Anal. Chem., 2021, 93(31):11043- 11051.
-
[11]
GAO N, WANG X, FENG J, LI X, WANG H, FAN D, ZHANG Y, MA H, WEI Q, JU H. Adv. Mater. Interfaces, 2021, 8(14):2100421.
-
[12]
SHI J, CHEN Z, ZHAO C, SHEN M, LI H, ZHANG S, ZHANG Z. Coord. Chem. Rev., 2022, 469:214675.
-
[13]
XIE X L, WANG D P, GUO C X, LIU Y H, RAO Q H, LOU F M, LI Q N, DONG Y Q, LI Q F, YANG H B, HU F X. Anal. Chem., 2021, 93(11):4916-4923.
-
[14]
FUJISHIMA A, HONDA K. Nature, 1972, 238(5358):37-38.
-
[15]
RUAN Y F, ZHANG N, ZHU Y C, ZHAO W W, XU J J, CHEN H Y. Acta Phys.-Chim. Sin., 2017, 33(3):476-485.
-
[16]
WANG J, LIU Z H. TrAC, Trends Anal. Chem., 2020, 133:116089.
-
[17]
ZHANG X, GUO Y, LIU M, ZHANG S. RSC Adv., 2013, 3(9):2846-2857.
-
[18]
YU S Y, ZHANG L, ZHU L B, GAO Y, FAN G C, HAN D M, CHEN G, ZHAO W W. Coord. Chem. Rev., 2019, 393:9-20.
-
[19]
ZHAO W W, XU J J, CHEN H Y. Chem. Soc. Rev., 2015, 44(3):729-741.
-
[20]
YANG L, ZHANG S, LIU X, TANG Y, ZHOU Y, WONG D K Y. J. Mater. Chem. B, 2020, 8(35):7880-7893.
-
[21]
LIANG J H, CHEN D, YAO X, ZHANG K X, QU F L, QIN L S, HUANG Y X, LI J H. Small, 2020, 16(15):e1903398.
-
[22]
LI T, DONG H, HAO Y, ZHANG Y, CHEN S, XU M, ZHOU Y. Electroanalysis, 2021, 34(6):956-965.
-
[23]
GE L, LIU Q, HAO N, KUN W. J. Mater. Chem. B, 2019, 7(46):7283-7300.
-
[24]
CHEN M, MENG H, MO F, GUO J, FU Y. Biosens. Bioelectron., 2021, 191:113475.
-
[25]
QIU Z, TANG D. J. Mater. Chem. B, 2020, 8(13):2541-2561.
-
[26]
ZANG Y, LEI J, JU H. Biosens. Bioelectron., 2017, 96:8-16.
-
[27]
SHU J, TANG D. Anal. Chem., 2020, 92(1):363-377.
-
[28]
DEVADOSS A, SUDHAGAR P, TERASHIMA C, NAKATA K, FUJISHIMA A. J. Photochem. Photobiol., C, 2015, 24:43- 63.
-
[29]
TU W W, WANG Z Y, DAI Z H. TrAC, Trends Anal. Chem., 2018, 105:470-483.
-
[30]
ZHOU Q, TANG D P. TrAC, Trends Anal. Chem., 2020, 124:115814.
-
[31]
LIU Q, ZHANG H, JIANG H, YANG P, LUO L, NIU Q, YOU T. Biosens. Bioelectron., 2022, 216:114634.
-
[32]
ZHAO W W, XU J J, CHEN H Y. Chem. Rev., 2014, 114(15):7421-7441.
-
[33]
WANG M, LIANG G, WANG M, HU M, ZHU L, LI Z, ZHANG Z, HE L, DU M. Chem. Eng. J., 2022, 448:137779.
-
[34]
-
[35]
HU J, LU M J, CHEN F Z, JIA H M, ZHOU H, LI K, ZENG X, ZHAO W W, LIN P. Adv. Funct. Mater., 2022, 32(26):2109046.
-
[36]
-
[37]
GUAN X, DENG X, SONG J, WANG X, WU S. Anal. Chem., 2021, 93(17):6763-6769.
-
[38]
LENG D, ZHAO J, REN X, XU R, LIU L, LIU X, LI Y, WEI Q. Anal. Chem., 2021, 93(30):10712-10718.
-
[39]
LI Y, CHEN F Z, XU Y T, YU W J, LI H Y, FAN G C, HAN D M, ZHAO W W, JIANG D C. Anal. Chem., 2019, 91(20):12606-12610.
-
[40]
YIN H, WANG M, ZHOU Y, ZHANG X, SUN B, WANG G, AI S. Biosens. Bioelectron., 2014, 53:175-181.
-
[41]
ZHAO C Q, DING S N, XU J J, CHEN H Y. ACS Appl. Nano Mater., 2020, 3(11):11489-11496.
-
[42]
WU T, YU S, DAI L, FENG J, REN X, MA H, WANG X, WEI Q, JU H. ACS Sens., 2022, 7(6):1732-1739.
-
[43]
LONG D, TU Y, CHAI Y, YUAN R. Anal. Chem., 2021, 93(38):12995-13000.
-
[44]
SHEN Y Z, GUAN J, MA C, SHU Y, XU Q, HU X Y. Anal. Chem., 2022, 94(3):1742-1751.
-
[45]
QIN Y, WEN J, ZHENG L, YAN H, JIAO L, WANG X, CAI X, WU Y, CHEN G, CHEN L, HU L, GU W, ZHU C. Nano Lett., 2021, 21(4):1879-1887.
-
[46]
YANG R, JIANG G, LIU H, HE L, YU F, LIU L, QU L, WU Y. Biosens. Bioelectron., 2021, 188:113337.
-
[47]
DENG H M, XIAO M J, CHAI Y Q, YUAN R, YUAN Y L. Biosens. Bioelectron., 2022, 197:113806.
-
[48]
CHEN Y, ZHOU M, YANG J, TAN Y, DENG W, XIE Q. Anal. Chem., 2021, 93(41):13783-13790.
-
[49]
CHENG Q, FENG J, WU T, ZHANG N, WANG X, MA H, SUN X, WEI Q. Anal. Chem., 2021, 93(40):13680-13686.
-
[50]
ZHU Y, XU Z, YAN K, ZHAO H, ZHANG J. ACS Appl. Mater. Interfaces, 2017, 9(46):40452-40460.
-
[51]
CHEN G, QIN Y, JIAO L, HUANG J, WU Y, HU L, GU W, XU D, ZHU C. Anal. Chem., 2021, 93(17):6881-6888.
-
[52]
LIU M, CHEN G, QIN Y, LI J, HU L, GU W, ZHU C. Anal. Chem., 2021, 93(28):9897-9903.
-
[53]
QIN Y, WEN J, WANG X, JIAO L, WEI X, WANG H, LI J, LIU M, ZHENG L, HU L, GU W, ZHU C. ACS Nano, 2022, 16(2):2997-3007.
-
[54]
WANG Y, WANG P P, WU Y, DI J W. Sens. Actuators, B, 2018, 254:910-915.
-
[55]
ZHANG L, LI P, FENG L, CHEN X, JIANG J, ZHANG S, ZHANG C, ZHANG A, CHEN G, WANG H. J. Hazard. Mater., 2020, 387:121715.
-
[56]
FENG L, ZHANG L, CHEN X, ZHANG C, MAO G, WANG H. Chem. Eng. J., 2022, 441:136073.
-
[57]
GE R, LIN X, DAI H, WEI J, JIAO T, CHEN Q, OYAMA M, CHEN Q, CHEN X. ACS Appl. Mater. Interfaces, 2022, 14(36):41649-41658.
-
[58]
LIU Y, LIU J, ZHANG Q, ZHU Q, LIU X, WANG Z, DAI Z. Adv. Funct. Mater., 2021, 32(5):2106854.
-
[59]
WANG X, RONG X, ZHANG Y, LUO F, QIU B, WANG J, LIN Z. Anal. Chem., 2022, 94(8):3735-3742.
-
[60]
ZHANG Y, LEI J, HAO Q, JU H. ACS Appl. Mater. Interfaces, 2014, 6(18):15991-15997.
-
[61]
FU Y, YU Q, ZHANG Q, ZHANG X, DU C, CHEN J. Biosens. Bioelectron., 2021, 192:113547.
-
[62]
FU Y, XIAO K, ZHANG X, DU C, CHEN J. Anal. Chem., 2021, 93(2):1076-1083.
-
[63]
ZHANG Q, LIU S, DU C, FU Y, XIAO K, ZHANG X, CHEN J. Anal. Chem., 2021, 93(42):14272-14279.
-
[64]
ZHANG J, XUE X, DU Y, ZHAO J, MA H, REN X, WEI Q, JU H. Anal. Chem., 2022, 94(36):12368-12373.
-
[65]
LIU H M, JIANG G H, LIU L E, XUE L S, LI Y L, WU Y J, YANG R Y. Sens. Actuators, B, 2022, 372:132631.
-
[66]
JIANG G H, YANG R Y, LIU J, LIU H M, LIU L E, WU Y J, YOUMEI A. Sens. Actuators, B, 2022, 350:130859.
-
[67]
OUYANG B, ZHAO H, WANG Z L, YANG Y. Nano Energy, 2020, 68:104312.
-
[68]
WANG D, LIU X, KANG Y, WANG X, WU Y, FANG S, YU H, MEMON M H, ZHANG H, HU W, MI Z, FU L, SUN H, LONG S. Nat. Electron., 2021, 4(9):645-652.
-
[69]
PODBORSKA A, SUCHECKI M, MECH K, MARZEC M, PILARCZYK K, SZACIŁOWSKI K. Nat. Commun., 2020, 11(1):854.
-
[70]
ZHANG Y, HAO N, ZHOU Z, HUA R, QIAN J, LIU Q, LI H, WANG K. Chem. Commun., 2017, 53(43):5810-5813.
-
[71]
HAN J Y, WANG J, YANG M, KONG X, CHEN X Q, HUANG Z H, GUO H, GOU J, TAO S L, LIU Z M, WU Z M, JIANG Y D, WANG X R. Adv. Mater., 2018, 30(49):e1804020.
-
[72]
FU Y, ZOU K, LIU M, ZHANG X, DU C, CHEN J. Anal. Chem., 2020, 92(1):1189-1196.
-
[73]
ZHANG Q, YANG H, DU C, LIU S, ZHANG X, CHEN J. Anal. Chem., 2022, 94(39):13342-13349.
-
[74]
MO F, HAN M, WENG X, ZHANG Y, LI J, LI H. Anal. Chem., 2021, 93(3):1764-1770.
-
[75]
HOANG C V, HAYASHI K, ITO Y, GORAI N, ALLISON G, SHI X, SUN Q, CHENG Z, UENO K, GODA K, MISAWA H. Nat. Commun., 2017, 8:771.
-
[76]
LIAN Y, HAN J, YANG M, PENG S, ZHANG C, HAN C, ZHANG X, LIU X, ZHOU H, WANG Y, LAN C, GOU J, JIANG Y, LIAO Y, YU H, WANG J. Adv. Funct. Mater., 2022, 32(35):2205709.
-
[77]
RYZHKOV N V, YUROVA V Y, ULASEVICH S A, SKORB E V. RSC Adv., 2020, 10(21):12355-12359.
-
[78]
ZHANG X, YANG Y, LI Z, LIU X, ZHANG C, PENG S, HAN J, ZHOU H, GOU J, XIU F, WANG J. Adv. Opt. Mater., 2021, 9(21):2101256.
-
[79]
CHEN D B, CHEN Y C, ZENG G, LI Y C, LI X X, LI D, SHEN C, CHI N, OOI B S, ZHANG D W, LU H L. Nano Res., 2022, DOI:10.1007/s12274-022-5086-8.
-
[80]
FANG S, WANG D H, KANG Y, LIU X, LUO Y M, LIANG K, LI L A, YU H B, ZHANG H C, MEMON M H, LIU B Y, LIU Z H, SUN H D. Adv. Funct. Mater., 2022, 32(28):202202524.
-
[81]
LIU X, WANG D H, KANG Y, FANG S, YU H B, ZHANG H C, MEMON M H, HE J H, OOI B S, SUN H D, LONG S B. Adv. Funct. Mater., 2021, 32(5):202104515.
-
[82]
MACYK W, STOCHEL G, SZACIŁOWSKI K. Chem. Eur. J., 2007, 13(20):5676-5687.
-
[83]
WOJTYŁA S, BARAN T. J. Inorg. Organomet. Polym., 2016, 27(2):436-445.
-
[84]
HAO N, ZHANG Y, ZHONG H, ZHOU Z, HUA R, QIAN J, LIU Q, LI H, WANG K. Anal. Chem., 2017, 89(19):10133- 10136.
-
[85]
WANG C, ZHANG B, CAO J, ZENG B, ZHAO F. ACS Appl. Mater. Interfaces, 2022, 14(20):23743-23755.
-
[86]
KUBITZKY S, VENANZI M, BIONDI B, LETTIERI R, DE ZOTTI M, GATTO E. Chem. Eur. J., 2021, 27(8):2810-2817.
-
[87]
YASUTOMI S, MORITA T, KIMURA S. J. Am. Chem. Soc., 2005, 127(42):14564-14565.
-
[88]
CHEN D, LI J. J. Phys. Chem. C, 2010, 114(23):10478-10483.
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[3]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[4]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[5]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[6]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[7]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[8]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047
-
[9]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[10]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[11]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[12]
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144
-
[13]
Hong Yan , Wenfeng Wang , Keyin Ye , Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[18]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[19]
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
-
[20]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[1]
Metrics
- PDF Downloads(19)
- Abstract views(3110)
- HTML views(143)
Login In
DownLoad: